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Abstract 

Currently, the acoustic detection of beaked whales during passive acoustic surveys requires 
trained acousticians to identify beaked whale signals with the aid of various software programs.  
The development of reliable automated detection and classification methods will enable passive 
acoustic approaches to better meet monitoring needs for real-time mitigation of industry and 
military impacts.  During ongoing development of automated beaked whale detectors and 
classifiers it will be important for researchers at different institutions to utilize standardized 
metrics of performance.  At the Southwest Fisheries Science Center (SWFSC), automated 
detection algorithms for Cuvier’s beaked whale (Ziphius cavirostris) and Baird’s beaked whale 
(Berardius bairdii) were developed using PAMGUARD software (Douglas Gillespie: 
www.pamguard.org).  To evaluate the performance of these beaked whale detectors, 15 ten-
minute recording segments were processed in PAMGUARD, and the resulting signal detections 
were compared to manual logs of beaked whale signals confirmed by an experienced acoustician.  
The comparison was conducted using three methods: precise timestamp matching between 
manual and automated detections, detection counts from one-minute time bins, and binary 
presence/absence detection classification of one-minute bins.  The detections were scored as true 
positive, false positive, false negative or false classification.  Detector efficacy was quantified 
using measures developed for information retrieval systems (precision, recall, and F-score) as 
well as the Receiver Operating Characteristic.  Calculated performance scores were compared 
across evaluation methods.  We found that the method used to evaluate detector functionality 
greatly influences the resulting performance scores and subsequently our perception of detector 
ability.  Therefore, it will be important for researchers to clearly communicate methods and 
results of detector evaluation.  To allow for greatest precision and applicability to different 
recording datasets, we recommend that beaked whale detectors be evaluated using timestamp 
matching between manual and automated detections in trial datasets and that F-scores be used to 
compare detectors.  This approach avoids problems associated with binning datasets by 
eliminating the need for a measure of false negatives.  
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Introduction 

Passive acoustic monitoring for beaked whales 

Passive acoustic monitoring using automated acoustic detection algorithms is increasingly used 
to detect beaked whale species during cetacean ship surveys (Zimmer and Pavan 2008, Gillespie 
et al. 2009b, Yack et al. 2010).  Beaked whales (family Ziphiidae) are a family of at least 21 
visually elusive and deep diving species (Dalebout et al. 2004).   Since these animals forage in 
deep waters, they are primarily distributed offshore, and global species distributions and 
population structures are poorly understood (Dalebout et al. 2004).  Due to their long dive times 
and subtle surfacing behavior, beaked whales are not well suited for standard visual survey 
methods (Barlow 1999).  The strong connection between beaked whale diving behavior and 
vocal activity, combined with their general elusiveness makes passive acoustic monitoring 
(PAM) an ideal method for surveying these whales (Marques et al. 2009).  PAM is comprised of 
the detection, localization, and classification of a vocal signal and for beaked whales can be 
carried out either via an array of hydrophones towed behind a vessel (e.g., Gillespie et al. 2009b) 
or via an array of stationary hydrophones floating at the surface or mounted on the sea floor (e.g., 
Marques et al. 2009).  While current PAM procedures for beaked whales (including 
implementation of automated acoustic detection algorithms) require manual support by an 
experienced acoustician, increased automation of PAM methods will enable non-experts to 
detect, localize, and classify beaked whales (Yack et al. 2009).  Several researchers are currently 
working to improve beaked whale detection algorithms as evidenced by the proceedings of the 
Fifth International Workshop on Detection, Classification, Localization, and Density Estimation 
of Marine Mammals Using Passive Acoustics (Mt. Hood, Oregon, 2011).  In order to compare 
detector performance across software platforms and datasets, it will be necessary for researchers 
to establish a standard metric of performance evaluation.   

Beaked whales emit regular echolocation clicks while foraging, followed by rapid but weak buzz 
clicks during the final stages of prey capture (Johnson et al. 2004).  Regular echolocation clicks 
are useful for PAM due to their strength and regularity (Zimmer et al. 2008).  The frequency 
upsweep and long duration of beaked whale clicks make them distinctive from other cetacean 
clicks, even those that echolocate in similar frequency ranges (Johnson et al. 2006).  These 
distinguishing characteristics are important in the development of effective automated detection 
methods.  Beaked whale echolocation clicks have central frequencies of 20-40 kHz, inter-click 
intervals (ICIs) of 0.2-0.4 s, and durations near 200 ms (Johnson et al. 2004, Tyack et al. 2006, 
Zimmer et al. 2008).  Frequency modulation of beaked whale clicks occurs at a rate of 
approximately 110 kHz per ms (Johnson et al. 2006).  When beaked whales near their prey target 
(within ~3m, Johnson et al. 2004), clicks accelerate and the ICI decreases to the point that clicks 
are perceived as a buzz.  Buzz clicks have been documented at rates of 250 clicks per second 
(Johnson et al. 2004), are higher in frequency than regular echolocation clicks, and are not 
frequency modulated (Johnson et al. 2006). 

The two species of interest in this study were Cuvier’s beaked whale (Ziphius cavirostris) and 
Baird’s beaked whale (Berardius bairdii).  These two species were chosen because they can be 
reliably identified both visually and acoustically in the study area.  Cuvier’s beaked whales 
produce regular echolocation clicks with a central frequency range of 38-42 kHz (Johnson et al. 
2004, Zimmer et al. 2005) while Baird’s beaked whales produce clicks with a central frequency 
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range of 22-25 kHz.  In addition to foraging clicks, Baird’s beaked whales vocalize socially via 
tonal sounds and whistles at the surface (Dawson et al. 1998).  In this study, target vocalizations 
for acoustic detection of both species were regular echolocation clicks.   

Development and evaluation of automated acoustic detection algorithms  
 
In the field of cetacean bioacoustics, automated detection and classification algorithms have been 
utilized for over a decade (Mellinger et al. 2007). Automated detection algorithms have 
advantages over manual signal analysis due to their ability to rapidly process large datasets with 
a quantifiable and consistent detection bias (Mellinger 2004, Mellinger et al. 2007).  Approaches 
to automated detection and classification include neural networks, template matching, 
spectrogram correlation, and energy band comparisons, among others.  Different vocalizations 
may be particularly suited to certain automated detection methods.  For example, stereotyped 
vocalizations produced by mysticetes are amenable to template-matching methods, while 
variable tonal sounds produced by delphinids are better detected using band-limited energy 
summation methods (Mellinger et al. 2007).   

In order for automated detector output data to be useful, the capabilities of the detector must be 
quantified.  Four measures are commonly used to quantify detector performance.  These include 
true positive, false positive, false negative, and true negative detection rates, as evaluated in 
direct comparison to manual signal detections (Mellinger and Clark 2000, Mellinger 2004, 
Munger et al. 2005, Zimmer et al. 2008, Marques et al. 2009, Yack et al. 2010).  Detectors may 
be further evaluated in relation to variable detection thresholds, ICIs, and the rate of detection of 
cetacean individuals or groups.  Ideally, a detection method would find only true signals, but in 
reality the sensitivity of the detector must be configured to optimize a trade-off between true 
positives, false positives and false negatives (Mellinger et al. 2007).  The desired application of 
the detector will influence the optimization method, since for some contexts it is crucial that no 
true signals are missed (e.g., during real-time monitoring for impact mitigation), whereas for 
others it is important to eliminate false detections even if some true signals are missed (e.g., 
when using automated detection methods for density estimation).  Ultimately, the characteristics 
of an automated detector are less important than accurately quantifying detector performance 
(Marques et al. 2009).   

Mellinger and Clark (2000) addressed detector evaluation when they compared the performances 
of neural network and spectrogram correlation methods for detecting bowhead whale (Balaena 
mysticetus) vocalizations.  Using plots of false negatives versus false positives over variable 
detection threshold levels, the authors selected the detector with the lowest combined error, or 
sum of false positive and false negative error rates, as optimal.  For the detector using a neural 
network the combined error was 1.6% while for spectrogram correlation the combined error was 
2.5%.  Later work using these same two methods on a larger dataset of right whale (Eubalaena 
japonica) vocalizations found the neural network method to have a combined error of 6% while 
spectrogram correlation had a combined error of 26% (Mellinger 2004).  The discrepancies in 
error rates between these two studies is likely due to the size and nature of the training datasets 
used.  Below we will discuss potential problems with training datasets.  

To conduct these detector comparisons, both Mellinger and Clark (2000) and Mellinger (2004) 
used a dataset of sound files a few seconds in length containing either target signals (bowhead 
whale or right whale calls) or noise (background noise, other marine mammal vocalizations, or 
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equipment noise) sampled from larger recording datasets.  Mellinger (2004) recommended 
selecting noise samples that are likely to trigger the detector rather than random recording 
samples.  Training datasets in both studies contained large samples of signals and noise, 588 and 
888 respectively in Mellinger and Clark (2000) and 1,857 and 6,359 respectively in Mellinger 
(2004).  Short recording samples allowed the authors to score each sample as a true positive, 
false positive, true negative, or false negative and calculate error rates using these scores.  

The use of short recording samples as a testing dataset may artificially deflate the error rates 
associated with an automated detector.  Munger et al. (2005) report that a detector developed 
using short (one minute) and intermediate (one hour) recordings containing right whale calls 
became less effective when applied to datasets with durations increasing from one minute to one 
hour to one week.  Over one-minute trial periods, the detector resulted in 19% missed detections 
and 25% false detections, while over a one-week trial period the same detector missed over 30% 
of target signals and produced over 90% false detections.  Leary et al. (2011) found that when 
applying automated detectors to long-term recordings in the Arctic, detector performance did not 
stabilize until at least 400 random two-minute data samples were evaluated.   

The increase in noise and decrease in occurrence of true signals over longer sampling periods 
can make detectors developed using short sample recordings ineffective when used on large 
datasets (Munger et al. 2005).  These results suggest that short sample recordings are an 
unrealistic representation of whole datasets.  For example, the ratios of noise samples to true 
signal samples of approximately 2:1 and 3:1 in the evaluation datasets used by Mellinger and 
Clark (2000) and Mellinger (2004) respectively are not comparable to the true prevalence of 
vocalizations in large recording datasets.  Additionally, when a technician manually selects noise 
samples that they believe the detector will struggle to discern from true signals (as recommended 
by Mellinger 2004) a bias is introduced into the training dataset. A sample dataset constructed in 
this way contains only signals and loud noises in the frequency range of interest and is therefore 
not representative of the larger dataset.  This discrepancy in dataset quality leads to inaccurate 
error quantification.  Furthermore, binary classification of sample recordings containing target 
calls as either true positive or false negative will obscure multiple detections of a single true 
signal that can occur with some automated detection methods.  A better approach to detector 
validation would be to use random representative recording subsamples containing target signals 
as well as a variety of typical noise conditions.  

Evaluation of automated beaked whale acoustic detection algorithms  
 
When developing automated detectors for beaked whale vocalizations, it is important to consider 
the context in which the detector will be applied. Here we consider issues relevant to the use of 
automated detectors for density estimation.   

Zimmer et al. (2008) examined properties of beaked whale vocalizations in relation to dive 
behavior using a combination of bottom-mounted hydrophones and digital acoustic recording 
tags.  The authors recommended using a two-part detection and classification scheme that would 
examine both the spectral upsweep feature of beaked whale clicks and the ICI of click series in 
order to determine beaked whale presence.  This method requires that animals be on-axis to the 
receiver, so that the spectral upsweep of clicks is preserved, and close to the receiver, so that 
entire click trains are captured and accurate ICIs are calculated.  The presence of multiple 
vocalizing animals may further complicate any classification scheme based on ICI.     
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Using multiple acoustic methods simultaneously can increase the precision of beaked whale 
abundance estimates. Ward et al. (2008), Marques et al. (2009), and Moretti et al. (2010) all used 
data collected from bottom-mounted hydrophones in conjunction with DTAGs and automated 
beaked whale detectors for abundance estimation.  To evaluate results, Ward et al. (2008) 
compared the performances of matched filter and FFT-based signal detectors.  The matched filter 
method detected 92% of clicks while the FFT detector detected 49% of clicks.  Clicks emitted 
within 30 degrees of the hydrophone axis were detected at the greatest ranges.  Marques et al. 
(2009) used the output of an FFT-based energy detector for beaked whale clicks to calculate the 
probability of detecting vocalizations, the vocalization rate, and the proportion of false positive 
detections produced.  Output from the automated detector that was classified as a beaked whale 
signal was verified by manual examination.   False positives comprised 55% of total detector 
yield.  Moretti et al. (2010) used the same methods to verify detections using twenty uniformly 
spaced ten-minute samples and calculated a false positive rate of 26%.  One caveat to detector 
evaluation using a combination of DTAG and bottom-mounted hydrophone data is that DTAGs 
are instrumented on beaked whales only on calm weather days, when animals can be easily seen 
at the surface and safely approached.  Therefore, automated detection methods and resulting 
density estimation functions constructed and evaluated using these data may not accurately 
represent beaked whale signal detectability and density in stormy, noisy situations (Ward et al. 
2010).  

Beaked whale literature reviewed thus far contains analyses of recordings collected using 
bottom-mounted hydrophone arrays.  At the Southwest Fisheries Science Center (SWFSC), 
shipboard acoustic line-transect surveys have been conducted in conjunction with visual surveys 
for over a decade (Rankin 2008).  During these surveys, a towed hydrophone array is used to 
record marine mammal vocalizations during daylight hours.  Advantages to a shipboard platform 
include the ability to cover a larger geographic area and the ability to obtain visual confirmation 
of species identification for acoustic encounters.  However, towed hydrophone arrays are subject 
to higher levels of ambient noise than bottom-mounted hydrophones due to ship cavitation and 
relatively shallow hydrophone tow depth.  Additionally, the speed of the recording platform, the 
rapid attenuation of beaked whale clicks, and the orientation-dependent detectability of the clicks 
pose challenges to surveys using towed array data to quantify beaked whale presence. 

Yack et al. (2010) tested five beaked whale detection algorithms on towed-array data collected 
during a 2007 SWFSC shipboard survey.  True and false positive detection rates were calculated 
using a subset of 60 minutes of data from two of the trial days.  Sixty one-minute bins were 
evaluated for presence or absence of true beaked whale clicks.  Test data also included five 
encounters when only Risso’s dolphins (Grampus griseus) were present in the recordings in 
order to quantify false positive detection rates of beaked whale signals for this species.  This 
species was chosen as a representative delphinid with echolocation clicks likely to be classified 
as beaked whale signals by the automated detector due to similar ICIs and peak frequencies of 
echolocation signals.  The combined error associated with the PAMGUARD 1.0 (Gillespie et al. 
2009a) click detector was 29%.  A Gaussian mixture model (GMM) had a lower combined error 
(21%) but a higher rate of false detections (10% GMM versus 7% PAMGUARD).  
PAMGUARD was selected as a platform for further beaked whale detector development based 
on performance in this test, real-time detection capability, adaptability to different species and 
recording noise conditions, and ability for the user to refine and modify click classifiers in real-
time as needed to optimize performance.   
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Receiver Operating Characteristic (ROC) and Precision-Recall (PR) Frameworks 
 
The ROC framework is used to present the results of binary decision problems encountered in a 
range of disciplines, most notably in machine learning and medicine.   The output of a binary 
decision algorithm (the hypothesized classes) can be projected onto the true classes (as 
determined by a human operator) and divided into the number of true positives, true negatives, 
false positives, and false negatives.  These values make up a confusion matrix.  From these 
values, the true positive rate (of all positive cases, how many did the algorithm identify as 
positive?) and false positive rate (of all negative cases, how many did the algorithm identify as 
positive?) can be calculated.  An ideal algorithm would produce results with a true positive rate 
of one (100%) and a false positive rate of zero.  Since classification algorithms are seldom 
perfect, the ROC framework is used to optimize the trade-off between true positives and false 
positives according to the research question at hand.  The cost of increasing the true positive rate 
of an algorithm is usually an increase in the false positive rate.  Plots of ROC values for different 
algorithms are often used to visually represent this tradeoff and to select the most appropriate 
algorithm (Figure 1).  Swets et al. (2000) and Fawcett (2006) provide helpful reviews of ROC 
theory and applications. 

The ROC framework is commonly used in a medical context and requires data points to be 
discrete units, like healthy and unhealthy patients.  When applying this framework to the 
automated detection of cetacean vocalizations, and beaked whales in particular, the unit over 
which the algorithm is operating must be considered carefully.  Since recordings are continuous, 
one approach is to break the recordings into discreet segments of a few seconds or a few minutes 
in length, as was done in Mellinger and Clark (2000) and Mellinger (2004).  Since the mysticete 
vocalizations targeted in these studies were several seconds in length and non-overlapping, it was 
possible to extract discrete signal and noise samples from the continuous dataset.  Due to the 
short durations of beaked whale clicks, it is difficult to define a time unit that can contain only 
one vocalization and therefore only one of the four possible evaluation classes.  For example, a 
detector operating over a single second of true beaked whale recordings could produce true 
positives, false positives, and false negatives.   

Setting aside the possibility of multiple scores within a single second time unit, beaked whales 
occur in such low densities that true signals are very rare within recording datasets.  For example, 
within a ten-minute period of towed-array data, it would be extremely rare to detect even a 
hundred beaked whale vocalizations, and these occur within 0.4 seconds of one another.  
Therefore, an ideal detector would identify perhaps 50 beaked-whale-positive seconds in the 
600-second period.  The output of this ideal detector would be classed as 50 true positives, 0 
false positives, 0 false negatives, and 550 true negatives.  The problem with this scenario is that 
the number of seconds classed as true negatives is an order of magnitude higher than the number 
of seconds classed as true positives.  If these 100 beaked whale vocalizations were the only 
detections within an entire hour or an entire day, the number of true positives would remain the 
same while the number of true negatives increases proportionate to the duration of the recording.  
The ROC framework requires a measure of true negatives in order to calculate a false positive 
rate, but in the case of beaked whale vocalizations, the false positive rate is artificially decreased 
with an increased sample size and therefore is not a very informative metric.   
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Due to the low densities of beaked whale vocalizations in towed array datasets, the output of 
automated detection algorithms has a skewed class distribution that can be better analyzed using 
a Precision-Recall (PR) framework (Davis and Goadrich 2006).  The PR framework does not 
require discreet sampling units because it does not require a measure of true negatives.  Events 
are scored as true positives, false positives, and false negatives and can be displayed in a 
contingency table, and the different evaluation scores are calculated as follows: the precision of a 
detector is the proportion of all automated detections that are true positives.  The recall of a 
detector is the same as the true positive rate as defined in the ROC framework and is the 
proportion of all true events that are identified by the automated detector.  Performance curves 
are used to compare different algorithms by plotting precision against recall.  In this space both 
scores for an ideal detector would approach one (Figure X).  The F-score is the geometric mean 
of precision and recall and can be weighted to emphasize the role of either precision or recall in 
optimizing detector performance. 

The PR framework is not independent from the ROC framework but offers a more thorough 
approach to the evaluation of automated detectors. Examining algorithm performance with PR 
metrics can expose differences in algorithm performance that are not visible in the ROC 
framework.  Davis and Goadrich (2006) prove that when comparing the performance of multiple 
algorithms, a particular algorithm can be optimal in ROC space only if it is optimal in PR space. 
In the case of odontocete vocalizations, we believe that the PR framework will provide an 
appropriate and thorough approach to the evaluation of automated detection algorithms.  

Study Objectives 

In the present study, we developed a beaked whale detector using an energy band comparison 
algorithm in PAMGUARD 1.9.01.  The detector was applied to recordings from a towed 
hydrophone array survey, and the resulting detector output was analyzed with reference to 
methods used in previous studies of the characterization of beaked whale detectors.  Through 
application of the ROC and PR evaluation frameworks to our particular dataset, we aim to better 
understand the limitations of our automated detector in relation to our research questions and to 
more effectively integrate automatic and manual detection methods.  

 
Methods 

Acoustic monitoring and recording during a line-transect survey  

Data for this study were collected during the 2008 Oregon, California, and Washington Line-
transect and Ecosystem (ORCAWALE) cruise and the 2009 Channel Islands Beaked Whale 
Acoustic Survey (BWAS).  The ORCAWALE survey transited between the coast and 556 km 
offshore, covering a total of approximately 11,600 km of predetermined transect lines (Barlow 
2010).  Between 28 July and 10 December 2008, a five-element hydrophone array consisting of 
two mid-frequency hydrophones (frequency response 500Hz to 55kHz +/- 5dB re 1 V/µPa) and 
three high-frequency hydrophones (Reson TC4013 hydrophones with a frequency response of 
1.5 to 150 kHz ±3 dB and a sensitivity of -170 dB re 1V/µPa after 40 dB pre-amplification) were 
towed 300 m behind the NOAA ship MacArthur II at a depth of four to eight meters.  Data from 
two of the high frequency oil-filled array hydrophones were digitized at a rate of 480 k-
samples/sec using a National Instruments USB-6251 interface and were continuously recorded to 
hard drives using Logger 2000 (Douglas Gillespie: www.ifaw.org/sotw) software.  During 
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daylight hours, a visual team of three observers surveyed for marine mammals from the flying 
bridge of the ship using 25x and hand-held binoculars.  Five computers were operated by 
acousticians to detect cetaceans using a combination of manual and automated methods.   
Spectrographic displays were monitored by acousticians using ISHMAEL software (Mellinger 
2001).  Manually detected cetacean vocalizations were localized using cross-correlation 
algorithms in ISHMAEL and plotted in conjunction with GPS positions using Whaltrak 2.6 (Jay 
Barlow).  Beaked whale vocalizations were detected using PAMGUARD 1.0 detection 
algorithms. Special protocols were conducted when either the visual or acoustic team detected 
beaked whales.   When a beaked whale group was detected in good survey conditions, the vessel 
was maneuvered to obtain acoustic recordings and, if possible, to obtain sightings or re-sightings 
of the animals. 

A second acoustic dataset was collected in 2009 in the Channel Islands.  From 18 to 25 August 
2009, a three-element hydrophone array was towed 100 m behind the sailing vessel Nauti Buoys 
over 950 km of trackline in the Southern California Bight.  The hydrophone array was comprised 
of three high-frequency hydrophones (Reson TC4013 hydrophones with a frequency response of 
1.5 to 150 kHz ±3 dB and a sensitivity of -165 dB re 1V/µPa after 40 dB pre-amplification).  A 
Magrec was used to high-filter the analog signal at 2Hz.  The signal was digitized at a sampling 
rate of 384 kHz using a National Instruments 6251 USB data acquisition board connected to a 12 
V computer and recorded continuously using Logger 2000.  Due to limited power on the research 
vessel, the entire acoustic system was run off 12 V batteries.  In addition to aural and visual 
monitoring by a technician, Rainbow Click software was used for automatic detection and 
classification of beaked whale echolocation signals.  A team of two visual observers used 7x50 
handheld binoculars to search for marine mammals.  More detailed survey methods can be found 
in Yack et al. 2011. 

Processing survey recordings with PAMGUARD software 

During the ORCAWALE cruise there were eighteen joint visual and acoustic encounters of 
beaked whales: seven of Baird’s beaked whales, seven of Cuvier’s beaked whales, one of 
Mesoplodon sp., and three of unidentified beaked whales (Barlow 2010).  All visual detections 
were also detected acoustically in real-time.  An additional 65 acoustic-only encounters were 
classified as unidentified beaked whale encounters and an additional 13 acoustic-only encounters 
were classified as possible Baird’s beaked whale.  During post-processing of ORCAWALE 2008 
recordings, it was determined via trials on recordings of confirmed beaked whale encounters that 
improved classification algorithms in PAMGUARD 1.9.01 would yield more accurate and 
complete detection results.  ORCAWALE 2008 high-frequency recordings were post-processed 
in the PAMGUARD 1.9.01 Mixed Mode.  This PAMGUARD mode allows click detections to be 
linked to GPS data collected during the survey for localization purposes.  All recordings from 
this survey were processed using a standardized energy band comparison click detector, which 
works by comparing the acoustic energy in test and control frequency bands.  The energy in the 
test band must exceed that in the control band by a threshold of a user-defined number of 
decibels in order to trigger a detection.  The detection parameters (Tables 1 and 2) were designed 
to classify signals into unidentified detections, general beaked whale detections (including 
Cuvier’s beaked whales), Baird’s beaked whale detections, and transducer noise detections.  In 
real-time, the PAMGUARD detection parameters were adjusted throughout the day depending 
on weather and cavitation-related noise conditions.  During post-processing, standardized 
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parameters, including a fixed detection threshold, were applied to all survey recordings.  
Standardized parameters were used to enforce constant acoustic detection effort across the 
dataset.   
 
Analyzing PAMGUARD detection and classification output 

Initial review of the automated detector output was conducted with reference to real-time visual 
and acoustic encounters. Histograms of automated detections for each day of data were generated 
in one, five, and ten-minute bins.  Histograms of intervals between automated detections 
(approximating ICIs) from periods with known beaked whale encounters were also generated.   

Verification of beaked whale encounters 

In addition to the methods described above, a secondary filtering method was developed that 
relies on the spectral characteristics of beaked whale clicks.  All automated detection data were 
divided into ten-minute bins, and bins with fewer than five or more than 1,000 automated beaked 
whale detections were eliminated from consideration.  Large numbers of automated beaked 
whale click detections indicate false positives due to ambient noise or non-relevant odontocete 
species.  Rainbow Click files generated by PAMGUARD, which store the waveform 
characteristics of all auto-detected clicks, were reviewed to examine spectral properties of clicks 
for all of the qualifying bins in Legs 1-4 of the ORCAWALE survey.  Waveforms, spectral plots, 
ICIs and Wigner plots were examined using Rainbow Click, and beaked whale clicks with peak 
frequency, ICI, and upsweep characteristics matching those of published descriptions were 
classified as true detections (Figure 2).  

Evaluating automated detector performance 

To quantify the performance of the automated detector over the entire survey, a series of 23 ten-
minute test periods were selected for closer examination.  These consisted of ten periods in 
which detections of Cuvier’s beaked whales or unidentified beaked whales occurred in real-time, 
five in which detections of Baird’s beaked whales or possible Baird’s beaked whales occurred in 
real-time, and eight with no real-time beaked whale detections.  For the periods with Cuvier’s 
and Baird’s beaked whales present, only periods containing 15 or more clicks in the ten-minute 
test period were analyzed with multiple evaluation methods.  This criterion allowed the 
acoustician to confidently classify the test period as containing beaked whales.  All 230 minutes 
of evaluation data were pooled to determine total performance scores for Cuvier’s and Baird’s 
beaked whale detectors.  Because this detector will be applied to data from line-transect surveys, 
test periods were selected from segments of standard acoustic and visual survey effort.  Standard 
line-transect segments are straight-line segments of consistent effort; therefore, non-beaked 
whale vocalizations from other species that were visually detected and cavitation noise due to 
ship turns were minimal during the test periods.  The test periods were selected with reference to 
only the effort and encounter databases, so that PAMGUARD detector results could not 
influence the selection of test periods.  The ten-minute test periods were almost always chosen to 
be the ten minutes immediately following the time of the first acoustic detection in order to 
maximize the number of true clicks included before the ship moved out of range of the 
vocalizing animal.  Exceptions were made if the encounter database noted particularly strong or 
frequent clicks at a different time during the encounter.  None of the test periods contained 
vocalizations of both Cuvier’s and Baird’s beaked whales. 
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The sound files for the 23 test periods were copied into folders, ordered randomly, and labeled 
only by arbitrary period number.  An experienced acoustician (TMY) browsed each ten-minute 
period and logged the start times of all beaked whale clicks.  A technician (EKJ) extracted the 
start time and species codes for all automated detections within each of the test periods from 
databases generated for each day of data processed in PAMGUARD.  Automated detections 
were aligned with manual detections and each individual true beaked whale click or automated 
detection was assigned one of the following scores: 

True Positive (TP):  Both time and species classification matched between manual and automated beaked 
whale detections.  

False Positive (FP):  Time of an automated detection did not match a manual detection.  No true beaked 
whale signal existed. 

False Negative (FN):  Time of a manual detection did not match to an automated detection.  Detector 
failed to recognize a true beaked whale signal. 

False Classification (FC):  Time of an automated detection matches a manual detection, but the species 
classification was incorrect.  

Non-Relevant Classification (NC): Automated detections with species classifications not of interest.  

Calculating Measures of Detector Performance 

In order to evaluate the performance of the automated detector in the test periods, the following 
measures were calculated for each test period: 

Precision (P): probability that an automated detection will be true 

P = TP
TP +FP

 

Recall (R): probability that a true signal will be automatically detected 

R = TP
TP +FN

 

F-score (F): relationship between precision and recall 

 

F = 2P*R
P + R

 

Methods for Evaluating Detector Performance 

In addition to the measures listed above, three different methods of data analysis were used to 
evaluate detector performance. 

Method A: Timestamp Matching 

In this method, timestamps were compared from manual and automated detections.  In order to 
count as a true positive, both the time and the classification of the detection had to match.  Only 
true positives, false positives, and false negatives were used in calculations, where false 
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classifications were counted as false negatives.  No measure of true negatives was made.  
Precision, recall, and F-scores were calculated. 

Method B: No Classification Scheme 

To evaluate the classification scheme used by the detector, in this method no distinction was made 
between automated detection classification codes.  Manual and automated detections had to match 
only in time to count as a true positive, so in this method TP = TP + FC as calculated previously.  
Similarly, false positives were counted for all automated detection classification codes, so FP = FP 
+ NC.  Precision, recall, and F-scores were calculated.  This method is expected to result in higher 
recall but lower precision.   

Method C: Binary Classification 

In the previous evaluation methods described, no measure of true negatives was made.  In order to 
calculate true negatives, test periods were binned by one minute, and each minute was evaluated 
for presence or absence of manual and automated detections.  True positives were bins containing 
both manual and automated detections, and true negatives were bins containing neither manual nor 
automated detections.  False positives and false negatives were also scored for each one-minute 
bin.  Based on this analysis, precision, recall, and F-scores were calculated.  Since the number of 
clicks is not evaluated when using this method, all scores are expected to increase. 

For methods requiring a match between the timestamps of manual and automated detections, 
timestamps were matched to within one second.  This degree of flexibility was allowed because 
recording times for sound files are accurate to one second, and automated and manual detection 
logs both record event times as seconds elapsed from the start of the file.  Additionally, this one-
second allowance accounts for any error associated with manual selection of the signal start time.  

If more than one automated detection was recorded within one second of a true signal, the closest 
automated detection was scored as a true positive or false classification.  If the closest detection 
was scored as a false classification and another automated detection within one second was the 
correct classification, the correctly classified automated detection was scored as a true positive 
and the incorrectly classified automated detection was scored as a non-relevant classification.   

Measures of precision, recall, and F-score were calculated for each Cuvier’s beaked whale and 
Baird’s beaked whale test period and each method, resulting in nine scores for each test period.  
Measures of performance were summarized across periods through calculation of mean and total 
scores.  Total scores were calculated by summing data across the 230-minute sample dataset, 
incorporating data not reflected in the species-specific mean scores.  This total score represents a 
slightly more accurate representation of detector performance than mean scores over the entire 
dataset, including periods with noise and non-target species.  

Comparisons of detector performance across datasets 

A second filtering method was devised to compare the ICIs of automated detections against the 
expected range of 0.2 – 0.5 s (Madsen et al. 2005, Johnson et al. 2006).  The ICIs of automated 
detections within test periods were calculated in a moving window as the distance between each 
automated detection and all automated detections that followed within one second.  This method 
was applied to recordings of Cuvier’s beaked whales from both ORCAWALE and the 2009 
Channel Islands survey.  We used a kernel-density plot to illustrate the probability density 
function of the ICIs.  We expected that in a kernel-density plot of the values generated, periods 
with true beaked whale signals would show probability density peaks at ICIs of approximately 0, 
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0.4, and 0.8 seconds – surface bounce, first following click, and second following click for 
Cuvier’s beaked whales. 

To determine whether noise conditions were a primary determinant of detector performance in 
the ORCAWALE dataset, the same PAMGUARD automated detector (settings in Table 1 and 
Table 2) was applied to recordings of Cuvier’s beaked whales collected during the ORCAWALE 
and 2009 Channel Islands surveys, but the threshold for detection was varied between 10 dB and 
20 dB in a series of trials.  Due to differences in survey platforms, the ORCAWALE data were 
considered to have a qualitatively low signal-to-noise ratio (SNR) while the Channel Islands data 
had a qualitatively high SNR, so it was expected that detector performance would differ across 
the datasets.      

Results 

Summary 

Real-time acoustic monitoring effort was carried out for 762 hours over the course of the survey, 
and 976 hours of automated high-frequency recordings were collected.  Of these recordings, 
approximately 624 hours were collected during standard line-transect effort.  230 minutes of 
standard effort recordings were selected as a sample dataset with which to evaluate detector 
performance. Approximately 490 hours of click file recordings were analyzed in Rainbow Click 
to verify the presence of beaked whales using spectral properties of the clicks and confirming the 
presence of frequency upsweeps.   
 
Reviewing output from the automated beaked whale detection algorithm 

Histograms and histogram count data of automated detections generated for each day of data 
were initially intended to determine beaked whale presence or absence throughout the dataset. 
Detector performance was not adequate to be used with a fixed click count criterion to 
unequivocally determine beaked whale presence in the midst of other species and variable noise 
conditions.  It is likely that using standardized detection parameters across all recordings greatly 
increased false detections triggered by noise.  A histogram from a single day of beaked whale 
detections, 9/6/2008, is included as Figure 3 to illustrate that true beaked whale clicks were 
difficult to distinguish from background noise and non-target species. 

A method for determining beaked whale presence based on ICI was evaluated.  This method 
used the intervals between each automated detection and all of the automated detections that 
followed within one second.  This filtering mechanism worked well on quiet datasets (Figure 4, 
top panels) in which peak intervals were visible at multiples of the expected ICI, but failed on 
noisy datasets (Figure 4, bottom panels) in which not enough true clicks were detected and true 
ICIs were obscured by noise.  This method was discarded as a possible indicator of beaked whale 
presence in the ORCAWALE 2008 dataset. 

Automated detector performance evaluation 

Of the 23 test periods selected for examination, only 11 were ultimately included in the 
comparison of detector evaluation methods.  Three of the periods selected for Cuvier’s beaked 
whales and one of the periods selected for Baird’s beaked whales contained too few clicks to be 
positively classified as containing beaked whale vocalizations.  Of the blank periods containing 
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no real-time detections, four were found to have no cetacean vocalizations present, one contained 
sperm whale vocalizations, one contained dolphin vocalizations, and two were noted to be 
particularly noisy.  All of these periods not containing beaked whales are included as 
representatives of the variable noise conditions present in this survey.  Automated and manual 
detection counts for all 23 test periods are included in Table 3.  A summary of performance 
evaluation results for the nine Cuvier’s beaked whale and four Baird’s beaked whale periods 
selected for further analysis is included in Tables 4 and 5, respectively. 

Results of Cuvier’s beaked whale detector evaluation 

For evaluation of Cuvier’s beaked whale detections using Method A: Timestamp Matching, the 
automated detector achieved a mean precision of 0.37, a mean recall of 0.14, and a mean F-score 
of 0.17.  When the classification scheme was eliminated and these periods were evaluated using 
Method B: No Classification Scheme, the precision score decreased to a mean precision of 0.17, 
while the recall score increased to a mean recall of 0.41.  The mean F-score for Method B was 
0.18.  For Method C: Binary Classification, the mean precision was 0.80, the mean recall was 
0.64, and the mean F-score was 0.67.  Depending on the evaluation method used, precision 
scores for individual periods containing Cuvier’s beaked whales ranged from 0.04 to 1.00, recall 
scores ranged from 0.01 to 1.00, and F-scores ranged from 0.03 to 0.86.  Method A produced the 
lowest F-scores while Method C produced the highest.  Applying Method A over the entire 230-
minute sample dataset, the Cuvier’s beaked whale detector had a precision of 0.07, a recall of 
0.07, and an F-score of 0.07. 

Results of Baird’s beaked whale detector evaluation 

Using Method A: Timestamp Matching on Baird’s beaked whale periods, the automated detector 
had a mean precision of 0.37, a mean recall of 0.07, and a mean F-score of 0.12.  For Method B: 
No Classification Scheme, the mean precision was 0.27, the mean recall was 0.37, and the mean 
F-score was 0.31.  For Method C: Binary Classification, the mean precision was 0.82, the mean 
recall was 0.76, and the mean F-score was 0.78.  Precision scores for periods containing Baird’s 
beaked whales ranged from 0.12 to 1.00, recall scores ranged from 0.13 to 1.00, and F-scores 
ranged from 0.17 to 1.00.  Method A produced the lowest F-scores while Method C produced the 
highest.  Applying Method A over the entire 230-minute sample dataset, the Baird’s beaked 
whale detector had a precision of 0.01, a recall of 0.16, and an F-score of 0.02. 

Detection of beaked whale groups 

During post-processing, 90% of possible Baird’s beaked whale acoustic encounters were 
manually verified and 85% of unidentified beaked whale acoustic encounters were manually 
verified and confirmed to be true beaked whale detections.  All of the verified beaked whale 
encounters from the ORCAWALE 2008 survey were detected using PAMGUARD’s automated 
classifier.  A total of 84 beaked whale encounters were identified. 

Discussion 

The automated beaked whale detector configured using PAMGUARD software at the SWFSC is 
intended to detect and classify beaked whales both in real-time and in post-processing of 
recordings collected using a towed hydrophone array.  The application of a standardized 
automated detector across all recordings from the ORCAWALE 2008 survey in conjunction with 
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manual confirmation of detections will be used to build models of beaked whale distribution and 
habitat use in the California Current Ecosystem.  While the automated detector configuration was 
optimized on sample datasets from the ORCAWALE 2008 cruise, it failed to clearly identify 
periods of beaked whale presence in the survey as a whole during post-processing.  This was 
primarily due to the difficulty of assigning a standardized threshold parameter for application to 
the entire recording dataset.  Extreme noise conditions in the recordings combined with variable 
sea states and the presence of non-beaked whale odontocete species made the results of the 
automated detector difficult to interpret.  Histograms of automated detections over single days of 
data failed to clearly distinguish beaked whale encounters from encounters with other species 
(Figure 3). Therefore, it was necessary to manually verify the presence of beaked whale clicks. 
Future work will aim to optimize detectors to minimize the need for this intensive manual review. 
In our assessment of the performance of this automated beaked whale detector over recordings 
from the entire survey, we explored different methods for evaluating detector performance.  

During initial configuration of this PAMGUARD beaked whale detector, various settings were 
tested on sample recordings from ORCAWALE.  Detector performance was evaluated iteratively 
based on click count comparisons between manual and automated detections over one- and ten-
minute periods.  As shown in Table 3, matching click counts between manual and automated 
detections is not a reliable measure of performance in noisy datasets.  Evaluation Method A: 
Timestamp Matching showed that absolute click counts can be deceiving.  This method produced 
the lowest detector performance scores.  Timestamp matching requires precision in aligning 
manual and automated click detections to avoid drift and thorough examination of any possible 
sources of alignment error.  We assume that time is continuous between sound files; in reality 
there may be dropped samples that cause drift in timestamp alignment.  In general, software 
programs record the manual or automated detection time from the beginning of the recording, so 
any timestamp error is introduced via the manual selection of signals.  In spite of these 
challenges, using timestamp matching to evaluate detector performance gives an accurate picture 
of exactly what is triggering the automated detector and allows users to address any problems 
with false or missed detections.   

Method B: No Classification Scheme was undertaken primarily to separate the performance of 
the detection algorithm from the classification algorithm.  This method produced lower precision 
and higher recall scores than timestamp matching. For our application, an increase in recall is not 
worth the decrease in precision of the detector.  The results of evaluation Method C: Binary 
Classification show that binning recording data by one minute likely produces inflated measures 
of performance.  In this study, binning data by one minute obscured the high numbers of false 
positives and false negatives present in the data.  Binning data may be appropriate for analyzing 
recordings with little extraneous noise, but it is not a precise method for comparing the 
performance of different automated detection methods across variable recording datasets.  As 
was mentioned in the introduction, binning data by one second is another possible evaluation 
technique but would also be prone to the problem of multiple detections within a single second.  
For our purposes, timestamp matching in a precision-recall framework provides the most 
accurate and useful description of detector performance.  

Previous authors have suggested using two criteria for determining beaked whale presence, the 
first based on spectral characteristics of the click, and the second based on the ICI of clicks 
detected (Zimmer et al. 2008).  When this method was applied to recordings of Cuvier’s beaked 
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whale with a qualitatively high SNR from the 2009 Channel Islands survey, the probability 
density values for ICIs were indeed highest at the values expected for this species (Figure 4, top 
panels).  However, when the same method was applied to one of the ORCAWALE test periods 
for this species, no such peaks in probability density at expected ICIs were present (Figure 4, 
bottom panels).  The high proportion of missed detections (up to 97% for test periods) meant that 
the ICI algorithm did not have enough true data points to accurately construct an ICI histogram.    
A comparison of algorithm performance across several thresholds was conducted for the same 
high and low SNR test periods (Figure 5) and showed that the high SNR Channel Islands dataset 
was much more responsive to changes in the detector threshold. The low SNR dataset suffered 
from consistently high rates of missed detections across thresholds due to noise masking, while 
the false positive rate varied with the detector threshold.  The extreme noise conditions in this 
low SNR ORCAWALE dataset presented challenges both to detector development and 
evaluation, highlighting the need to enhance recording quality through improvements to 
hardware and software design in future surveys. 

Results from the manual verification of spectral upsweeps indicate that all real-time encounters 
of beaked whales were detected using a combination of manual and automated methods.  This 
suggests that while the precision and recall scores of the detector are fairly low for individual 
clicks, groups of beaked whales were not missed using these automated post-processing 
techniques.  In our study, the output of the automated detector served to identify regions of the 
dataset for closer examination.  For population assessment and habitat modeling it is crucial to 
eliminate all false positive encounters of groups of beaked whales.  Due to the low precision rate 
of the automated detector, it was necessary to manually confirm beaked whale presence in 
periods containing automated beaked whale detections.  This method of filtering automated 
detection output is time consuming; however, requiring automated detections to be manually 
verified will prevent false detections from entering the dataset. With the integration of automated 
and manual methods used in this study, we have achieved a precision approaching one and are 
confident that beaked whale encounters that will be included in final assessments and future 
analyses represent true beaked whales.   

Ideally, automated detectors for cetacean vocalizations should be evaluated using a subset of the 
recording dataset large enough that the values for precision and recall can converge on true 
values.  The wide range of precision and recall values calculated from our evaluation dataset 
indicate that these scores were likely not stable and that a larger subset of data is required to 
evaluate detector performance.  Using similar evaluation methods, Leary (2011) found that 
precision and recall values did not stabilize for a particular mysticete detector until 800 minutes 
of sample data had been evaluated.  The amount of evaluation data required to arrive at stable 
precision and recall values will depend on the noise variability of the recording dataset.  
Recording datasets with low levels of extraneous noise and non-target species vocalizations may 
require very little evaluation data to arrive at stable precision and recall values compared to 
recording datasets with high noise levels.  Our 230-minute sample dataset was likely not 
extensive enough to accurately quantify the performance of our automated detection algorithms.  
Because beaked whale vocalizations are so rare, we biased the sample dataset towards periods 
with known beaked whale presence, which likely inflated estimates of precision and recall.  The 
contrast in F-scores across evaluation methods and between periods of target and non-target 
periods confirms that detector evaluation metrics must be carefully chosen to match the goals of 
a particular study.  A more robust method for evaluating these automated detectors would use a 
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large enough quantity of randomly subsampled data to capture true beaked whale vocalizations 
and also accurately represent the variety of noise conditions present in the dataset. 

Conclusion 

The comparison of performance evaluation methods for automated beaked whale detectors 
shows that binning data in order to generate the scores required in ROC methodology likely does 
not produce the most accurate measures of detector performance.  By comparing noisy and quiet 
datasets, we show how detector performance scores can vary with recording quality.  To allow 
for effective detector comparison we recommend that automated beaked whale detectors 
developed and used at different research institutions be evaluated with a standardized 
performance metric.  From our comparison of performance measures, we recommend matching 
timestamps between manual and automated beaked whale detections and applying the precision-
recall framework to summarize results.  The F-score does not require a measure of true negatives 
and thus we recommend it as the most appropriate measure of performance for beaked whale 
detection applications where true signals are rare.  Graphical representations (such as plots of 
precision versus recall or proportion missed versus proportion false) can be used to evaluate 
threshold-dependent detector performance.  Future work in the automation of beaked whale 
detection should aim to minimize manual effort required to verify beaked whale detections.  
Guidelines for the amount of evaluation data required to produce stable precision and recall 
scores for automated detectors would be helpful to researchers when developing and 
implementing automated detectors.  In the future, we will continue efforts to improve automated 
beaked whale detection techniques. In order to produce abundance estimates using this dataset, 
all manually verified beaked whale encounters will be re-localized. Our methods maximized the 
precision of our acoustic beaked whale identifications and will allow these data to be accurately 
used for abundance estimation and habitat modeling in subsequent analyses.  
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Tables 

Table 1: Click detection settings used in PAMGUARD software to post-process all survey recordings 

Menu Item Field Value
Raw Data Source Raw input data from Sound Acquisition
Auto Grouping One group
Channel Channel 0, Channel 1
Threshold 18.0 dB
Long Filter 0.00001000, Ch 0
Long Filter 2 0.00000100, Ch 1
Short Filter 0.10000000
Min Click Separation 100 samples
Max Click Length 1024 samples
Pre Sample 40 samples
Post Samples 0 samples
Create Sample Noise Measurements Yes
Interval 5.0 s

Trigger

Source

Click Detection Parameters

Noise

Click Length
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Table 2: Click classification settings used in PAMGUARD software to post-process all survey recordings 

Menu Item Field Value
Unique Code 3
Symbol Green Square
Channel Options Require positive identification on only one channel
Restrict Parameter Extraction To False

Click Length Enable False
Enable True
Test Band 11000.0 to 12800.0 Hz
Control Band 15000.0 to 45000.0 Hz, 3.0 dB Threshold
Control Band 60000.0 to 80000.0 Hz, 3.0 dB Threshold
Search and Integration Range 1000.0 to 90000.0 Hz, Smoothing 5 bins
Peak Frequency Enable True, 11000.0 to 12800.0 Hz
Peak Width Enable False
Mean Frequency Enable False

Zero Crossings Enable False
Unique Code 1
Symbol Orange Diamond
Channel Options Require positive identification on only one channel
Restrict Parameter Extraction To False

Click Length Enable False
Enable True
Test Band 32000.0 to 50000.0
Control Band 12000.0 to 22000.0 Hz, 3.0 dB Threshold
Control Band 140000.0 to 145000.0 Hz, 3.0 dB Threshold
Search and Integration Range 20000.0 to 95000.0 Hz, Smoothing 5 bins
Peak Frequency Enable True, 32000.0 to 50000.0 Hz
Peak Width Enable False
Mean Frequency Enable False

Zero Crossings Enable False
Unique Code 2
Symbol Blue Diamond
Channel Options Require positive identification on only one channel
Restrict Parameter Extraction To False

Click Length Enable False
Enable True
Test Band 11000.0 to 21000.0 Hz
Control Band 70000.0 to 80000.0 Hz, 3.0 dB Threshold
Control Band 140000.0 to 145000.0 Hz, 3.0 dB Threshold
Search and Integration Range 10000.0 to 90000.0 Hz, Smoothing 5 bins
Peak Frequency Enable 11000.0 to 21000.0 Hz
Peak Width Enable False
Mean Frequency Enable False

Zero Crossings Enable False

Peak and Mean Frequency
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Table 3: Manual and automated detection counts for all test periods.  Cuvier’s beaked whale and Baird’s beaked 
whale periods containing fewer than 15 manual detections (Periods Zc_01, Zc_07, Zc_10, Bb_02) were discarded 
from further analysis.  	  

Unidentified
Beaked 
Whale Berardius

12 kHz 
Transducer Total

Zc_01 11 5 0 4 5 14
Zc_02 108 32 8 59 4 103
Zc_03 67 29 9 18 0 56
Zc_04 78 235 21 179 22 457
Zc_05 73 5 0 4 0 9
Zc_06 17 63 21 99 10 193
Zc_07 14 7 2 12 0 21
Zc_08 33 14 2 14 2 32
Zc_09 16 33 6 33 5 77
Zc_10 0 24 5 31 4 64
Bb_01 19 9 1 12 0 22
Bb_02 7 1 2 0 0 3
Bb_03 68 55 12 76 7 150
Bb_04 46 12 1 24 4 41
Bb_05 23 12 1 16 2 31
Na_01 Noise 161 29 235 36 461
Na_02 Blank 435 33 279 22 769
Na_03 Sperm Whales 771 3 950 231 1955
Na_04 Noise 77 6 124 12 219
Na_05 Blank 23 6 62 21 112
Na_06 Blank 3 1 1 0 5
Na_07 Delphinid 426 154 46 0 626
Na_08 Blank 438 74 663 109 1284B
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Table 4: Detection and classification performance scores calculated for periods containing Cuvier’s beaked whale  

Period Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score CDR FDR
Zc_02 0.80 0.04 0.10 0.53 0.39 0.45 1.00 0.50 0.67 0.50 0.00
Zc_03 0.11 0.01 0.03 0.18 0.15 0.16 1.00 0.40 0.57 0.40 0.00
Zc_04 0.29 0.08 0.12 0.10 0.62 0.18 0.67 0.86 0.75 0.86 0.33
Zc_05 0.14 0.01 0.03 0.17 0.05 0.08 1.00 0.40 0.57 0.40 0.00
Zc_06 0.43 0.53 0.47 0.07 0.76 0.12 0.67 1.00 0.80 1.00 0.33
Zc_08 0.29 0.15 0.20 0.04 0.24 0.08 0.86 0.86 0.86 0.86 0.14
Zc_09 0.50 0.19 0.27 0.13 0.63 0.22 0.40 0.50 0.44 0.50 0.60
Mean 0.37 0.14 0.17 0.17 0.41 0.18 0.80 0.64 0.67 0.64 0.20

Method A: Timestamp Matching Method B: No Classification Scheme Method C: Binary Classification Method D: Yack 2010

 

 

Table 5: Detection and classification performance scores calculated for periods containing Baird’s beaked whale 

Method A: Timestamp Matching Method B: No Classification Scheme Method C: Binary Classification Method D: Yack 2010
Period Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score CDR FDR
Bb_01 0.42 0.26 0.32 0.41 0.47 0.44 0.86 0.86 0.86 0.86 0.14
Bb_03 0.12 0.13 0.12 0.18 0.41 0.25 1.00 1.00 1.00 1.00 0.00
Bb_04 0.25 0.13 0.17 0.29 0.26 0.27 0.67 0.57 0.62 0.57 0.33
Bb_05 0.30 0.26 0.28 0.21 0.35 0.26 0.75 0.60 0.67 0.60 0.25
Mean 0.27 0.20 0.22 0.27 0.37 0.31 0.82 0.76 0.78 0.76 0.18
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Figures 

 
Figure 1: Examples of ROC and Precision-Recall curves generated the ROCR.simple dataset in R.  These example 
plots demonstrate that a detector may appear to perform differently depending on which evaluation metrics are used. 

 
Figure 2: PAMGUARD click detection display showing an example Cuvier’s beaked whale acoustic encounter.  
Colored lines in the top panel represent bearing angle trajectories for individual beaked whales.  The lower left panel 
displays waveforms for signals received from each channel.  The middle panel illustrates peak frequency, and the 
right panel is a Wigner plot showing a an upswept signal characteristic of beaked whale clicks. 
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Figure 3: Histogrammed output of the PAMGUARD automated beaked whale detector over one day, 9/6/2008, 
illustrating the difficulty of extracting true beaked whale signals from background noise and the vocalizations of 
non-target species.    
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Figure 4:  Kernel density plots of Cuvier’s beaked whale click detection ICIs from a high SNR 2009 towed array 
recording (top two panels) and from a low SNR 2008 towed array recording (bottom two panels).  The ICIs 
calculated from automated and manual click detections are displayed in the left and right columns, respectively. ICIs 
were calculated for a ten-minute period by determining the time difference between each automated detection and 
all automated detections that followed within one second.  The dashed lines demonstrate the expected locations of 
click surface bounce, first following click, and second following click.  There is a clear ICI pattern visible in the 
high SNR dataset and no clear ICI pattern visible in the low SNR dataset.   
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Figure 5: Relationship between missed and false automated detections of beaked whale clicks.  The blue curve 
represents automated detector performance with a variable detection threshold on a 2008 towed array recording of a 
beaked whale with a low SNR.  The green curve represents automated detector performance with a variable 
detection threshold on a 2009 towed array recording of a beaked whale with a high SNR.  The optimal detector 
would score at the origin.  Masking of true signals in the low SNR recordings results in high proportions of missed 
detections across the variable detection threshold.   
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