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 A B S T R A C T

Estimating pinniped abundance is difficult because they are highly mobile and widely distributed, and spend 
the majority of time at sea. Abundance estimates are typically based on counts on land or ice. In species 
that breed colonially, such as the grey seal (Halichoerus grypus), monitoring is largely focused on the breeding 
season, and pup production (number of pups born in a season) is used as an index of the total population 
size. At any one colony, grey seals give birth over several months, so not all pups are present at the colony 
at any one time. Pups are born white and moult into an adult-like coat before leaving the colony. At most 
key UK breeding colonies, over the course of a breeding season, a series of digital photographic aerial surveys 
are conducted and analysts count the numbers of white and moulted seal pups photographed. We developed 
a flexible state-space model to estimate pup production using these count data. The model is comprised of a 
deterministic process model for birth, moult, and leaving, and a stochastic observation model that allows for 
imperfect detection and classification. We implemented this model in Template Model Builder (TMB) and fit it 
using maximum likelihood. We show that our model performs well on simulated and real datasets. This model 
could be applied to other taxa for which successive counts of different life stages are collected, and used to 
investigate key ecological questions including, for example, the impact of climate change on phenology.
1. Introduction

Estimates of the abundance and trend of animal populations are 
necessary for effective conservation and management. One component 
of these estimates can be the number of offspring produced per year. 
It is challenging to obtain this information for many marine verte-
brates, which spend most or all of their time at sea, where they are 
difficult to observe. It can be particularly hard to obtain information 
about how many individuals are recruited into a population. However, 
some species congregate on land or ice during certain life stages. For 
example, seabirds and pinnipeds congregate at breeding colonies where 
they reproduce and rear young. For most species, these processes are 
not precisely synchronous, and for some species there is no one point 
at which a total count of young-of-the-year can be made: earlier in the 
breeding season individuals are still to be born, while later in the season 
some young-of-the-year will have departed the colony.

Grey seals (Halichoerus grypus) aggregate on land or ice to give 
birth at breeding colonies. In the UK, most pups are born between 
September and December, with colonies in the southwest pupping 
earliest. Colonies pup progressively later in a clockwise cline around 

∗ Correspondence to: The Observatory, Buchanan Gardens, St Andrews, Scotland, KY16 9LX, United Kingdom.
E-mail address: eiren.jacobson@st-andrews.ac.uk (E.K. Jacobson).

the UK (Kovacs and Lavigne, 1986; Radford et al., 1978). The temporal 
distribution of births within colonies tends to be right-skewed, with a 
relatively rapid onset of births followed by a long right tail (Coulson 
and Hickling, 1964). Adult females give birth to a single pup, which 
they nurse for 15–21 days (Pomeroy et al., 1999). Around weaning the 
adult females go into oestrus and leave their pup. The pup undergoes 
a post-weaning fast before leaving the colony at around 31.5 days of 
age (Wyile, 1988). Pups are born with white coats (an evolutionary 
holdover of ice-breeding ancestors Boehme et al., 2012); pups complete 
their moult into adult-like coats (pelage) at around 23 days of age 
(Wyile, 1988; Radford et al., 1978). Because this process is not perfectly 
synchronous within or between colonies (Radford et al., 1978; Russell 
et al., 2019), there is no time at which all pups are present at the 
colonies and available to be counted.

To estimate the total number of pups born at key colonies in Scot-
land and eastern England, the Sea Mammal Research Unit (University of 
St Andrews) conduct multiple aerial photographic surveys throughout 
a survey season (usually 4 or 5). For details of survey methods, see 
Russell et al. (2019). Counts of white and fully moulted pups are 
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derived from resulting high-resolution photographs. Individual pups 
cannot be tracked through aerial surveys, so mark-recapture methods 
are not applicable. The separate counts of white and moulted pups 
can be used to estimate the timing of birth and moult curves (i.e., the 
probability of being born on different days of the season, or of moulting 
at different ages). White and moulted pups are counted separately and 
imperfectly. The counts are affected by two types of observation error: 
detection error (i.e., some pups are not counted) and classification error 
(i.e., white pups being counted as moulted pups and vice versa). False 
positives (e.g., a rock being mistaken for a seal pup) are thought to be 
rare.

The pup moulting process and the resulting counts of animals in 
different stages is somewhat analogous to bird moulting processes, 
which have been modelled previously (Underhill and Zucchini, 1986; 
Underhill, 1993; Erni et al., 2013). However, these Underhill-type 
models are not applicable in the case of grey seal pup production 
because the number of pups available to be surveyed is not a closed 
population: animals are entering (by being born) and leaving (by 
leaving the colony) the population (colony) over the course of the study 
period. A previous model has been used to estimate pup production 
(Russell et al., 2019), but it does not allow for the desired flexibility or 
extensibility to a hierarchical, multi-colony model.

Here, we develop a state-space version of the above model to 
estimate the total number of pups born at a breeding colony given serial 
counts of white and moulted pups. We describe the model framework 
and demonstrate its application to simulated and real data. In the 
discussion we consider how this model differs from the previous model 
and how it might be extended in the future.

2. Methods

2.1. Overview

We developed a state-space model to estimate the number of grey 
seals born at a colony using aerial photographic counts of white and 
moulted pups. The model consists of a deterministic process model 
and a stochastic observation model (Fig.  1). Time is discretized to 
day. The parameters (quantities to be estimated) are the total number 
of pups born 𝑁 , the mean birth day 𝜇𝑏, its standard deviation 𝜎𝑏, 
and the shape of the skew normal birth curve 𝛼𝑏 (note that a full 
list of symbols used is provided in Appendix  A). We evaluated model 
performance by fitting the model to simulated and real data. All data 
and code to implement these analyses are available at https://github.
com/eirenjacobson/HgPupProdModel.

2.2. State-space model

2.2.1. Process model
At the core of the process model is a discretized, truncated skew 

normal distribution of birth days. Following Russell et al. (2015), 
pup birth dates at breeding colonies tend to be right-skewed, with a 
relatively rapid rise in birth numbers to a peak, followed by a longer 
decline. The distribution is discretized because we model births per day 
and truncated because in this example it is assumed that no births occur 
before October 1st (which we denote as day 0) or after day 𝐷−1, where 
𝐷 is the maximum length (in days) of the birthing season. In practice, 
births start a few days after day 0 and finish before 𝐷 so the amount 
of truncation is minimal.

Let 𝐹 (𝑥;𝜇, 𝜎, 𝛼) denote the cumulative distribution function (CDF) 
of the skew normal distribution with mean 𝜇, standard deviation 𝜎, 
and shape 𝛼, evaluated at 𝑥. (Note that the skew normal distribution 
is typically parameterized in terms of location, shape and scale (as per 
O’Hagan and Leonard, 1976); the relationship between these parame-
ters and the mean, standard deviation, and skewness 𝛿 is given in Ap-
pendix  B.) When 𝛼 > 0 the distribution is right-skewed. Let 𝐹 𝑢(𝑥;𝜇, 𝜎, 𝛼)
𝑙

2 
Fig. 1. Schematic of the state-space pup production model. Nodes with single 
outlines indicate scalars while nodes in bold with double lines represent 
vectors. Parameters to be estimated by the model are indicated by grey 
shading. Data are indicated by an outer black box. The upper box delineates 
the process model, while the lower dashed box delineates the observation 
model. Symbols are defined in Appendix  A.

denote the CDF of the corresponding truncated distribution with lower 
and upper truncation 𝑙 and 𝑢 respectively, so that 

𝐹 𝑢
𝑙 (𝑥;𝜇, 𝜎, 𝛼) =

𝐹 (𝑥;𝜇, 𝜎, 𝛼) − 𝐹 (𝑙;𝜇, 𝜎, 𝛼)
𝐹 (𝑢;𝜇, 𝜎, 𝛼) − 𝐹 (𝑙;𝜇, 𝜎, 𝛼)

. (1)

Then, the probability that a pup is born on day 𝑑 (where 0 ≤ 𝑑 ≤ 𝐷−1), 
given that it is born at some point in the breeding season, is 
𝑝𝑏(𝑑) = 𝐹𝐷−1

0 (𝑑 + 1;𝜇𝑏, 𝜎𝑏, 𝛼𝑏) − 𝐹𝐷−1
0 (𝑑;𝜇𝑏, 𝜎𝑏, 𝛼𝑏), (2)

where 𝜇𝑏 is the mean birth day parameter, 𝜎𝑏 is the standard deviation 
of birth day parameter, and 𝛼𝑏 is the birth day shape parameter. If there 
are 𝑁 pups born over the breeding season, then the number born on 
day 𝑑 is 
𝑏(𝑑) = 𝑁𝑝𝑏(𝑑). (3)

Note that 𝑏(𝑑) is a continuous-valued function—in other words, we 
allow for fractional pups to be born. This is an approximation necessary 
for implementation (see Implementation, below), but it does not cause 
problems in practice because we model the observed number of pups 
using a normal distribution (see Observation Model, below).

Pups are assumed to moult and leave the colony according to their 
age, irrespective of day, up to (but not including) a maximum age 𝐴. 
Therefore, we model the distribution of times to moult and to leave 
using truncated normal distributions, determined by the age (in days) 
of the pup rather than the calendar day. Let 𝛷(𝑥;𝜇, 𝜎) denote the CDF 
of the normal distribution with mean 𝜇 and standard deviation 𝜎, 
evaluated at 𝑥, and let 𝛷𝑢

𝑙 (𝑥;𝜇, 𝜎) denote the corresponding truncated 
normal CDF with lower and upper limits 𝑙 and 𝑢. The probability of a 
pup moulting at age 𝑎 is given by 
𝑝𝑚(𝑎) = 𝛷𝐴−1

0 (𝑎 + 1;𝜇𝑚, 𝜎𝑚) −𝛷𝐴−1
0 (𝑎;𝜇𝑚, 𝜎𝑚), (4)

where 𝐴 is the maximum age that a pup can moult, 𝜇𝑚 is the mean 
moult age parameter, and 𝜎𝑚 is the standard deviation of moult age 
parameter. The probability of a pup moulting at age 𝑎 or earlier is 

𝑝𝑚(0 ∶ 𝑎) =
𝑎
∑

𝑖=0
𝑝𝑚(𝑎) = 𝛷𝐴−1

0 (𝑎;𝜇𝑚, 𝜎𝑚). (5)

Similarly, the probability of a pup leaving the colony at age 𝑎 is given 
by 
𝑝𝑙(𝑎) = 𝛷𝐴−1

0 (𝑎 + 1;𝜇𝑙 , 𝜎𝑙) −𝛷𝐴−1
0 (𝑎;𝜇𝑙 , 𝜎𝑙), (6)

where 𝐴 is the maximum age that a pup leaves (assumed to be the 
same as the maximum age at moult), 𝜇  is the mean leaving age 
𝑙
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parameter, and 𝜎𝑙 is the standard deviation of leaving age parameter. 
The probability of leaving at age 𝑎 or earlier is 

𝑝𝑙(0 ∶ 𝑎) = 𝛷𝐴−1
0 (𝑎;𝜇𝑙 , 𝜎𝑙). (7)

Given these definitions, the number of white pups present on the colony 
at the end of day 𝑑 (where 0 ≤ 𝑑 < 𝐷 + 𝐴) is 

𝑤(𝑑) =
𝑑
∑

𝑖=0

(

𝑏(𝑖)
[

1 − 𝑝𝑚 (0 ∶ 𝑑)
] [

1 − 𝑝𝑙 (0 ∶ 𝑑)
]

)

(8)

and the number of moulted pups is 

𝑚(𝑑) =
𝑑
∑

𝑖=0

(

𝑏(𝑖)𝑝𝑚 (0 ∶ 𝑑)
[

1 − 𝑝𝑙 (0 ∶ 𝑑)
]

)

. (9)

In the implementation described here, we assume that the process 
model parameters 𝐷, 𝜇𝑚, 𝜎𝑚, 𝜇𝑙, and 𝜎𝑙 are known (see Table  2).

2.2.2. Observation model
The timing of observations is measured in terms of days since 

October 1st of each year. There are two types of observation error that 
need to be accounted for in the model: detection error and classification 
error. Let the probability of detecting white pups be 𝑝ow, the proba-
bility of detecting moulted pups be 𝑝om, the probability of correctly 
classifying white pups as white be 𝑝cw, and the probability of correctly 
classifying moulted pups as moulted be 𝑝cm. Then

𝐸(𝑦𝑤(𝑑)) = 𝑤(𝑑)𝑝ow𝑝cw + 𝑚(𝑑)𝑝om(1 − 𝑝cm) (10)

𝐸(𝑦𝑚(𝑑)) = 𝑤(𝑑)𝑝ow(1 − 𝑝cw) + 𝑚(𝑑)𝑝om𝑝cm (11)

where 𝑦𝑤(𝑑) and 𝑦𝑚(𝑑) are observations of the number of white and 
moulted pups on day 𝑑 and 𝐸() denotes expectation. Here, the obser-
vation model parameters 𝑝ow, 𝑝om, 𝑝cw and 𝑝om are assumed known (see 
Table  2).

We model the observations as being normally distributed around 
these expectations, with variances 𝜎2𝑤 and 𝜎2𝑚. To derive the vari-
ances, we assume that both the detection and the classification process 
are binomial (i.e., that each detection and classification event is an 
independent Bernoulli trial), which leads to

𝜎2𝑤 = 𝑤(𝑑)𝑝ow𝑝cw(1 − 𝑝ow𝑝cw) + 𝑚(𝑑)𝑝om(1 − 𝑝cm)(1 − 𝑝om(1 − 𝑝cm)) (12)

𝜎2𝑚 = 𝑤(𝑑)𝑝ow(1 − 𝑝cw)(1 − (1 − 𝑝cw)) + 𝑚(𝑑)𝑝om𝑝cm(1 − 𝑝om𝑝cm). (13)

This observation model assumes that misclassified pups are detected 
according to their true class; i.e., moulted pups are always detected 
with probability 𝑝om regardless of whether they are classified as white 
or moulted.

2.2.3. Likelihood
Let 𝑂 represent the set of days on which observations take place, 

and 𝑜 represent one of these days. For each observation day 𝑜, the 
likelihood of the observed number of white pups 𝑦𝑜 and moulted pups 
𝑧𝑜 is evaluated using normal distributions with means 𝑤𝑜 and 𝑥𝑜 and 
standard deviations 𝜎𝑤 and 𝜎𝑥 from Eqs.  (12) and (13). Assuming 
independence between observations, the likelihood  of the parameters 
of the model, 𝑁 , 𝜇𝑏, 𝜎𝑏, and 𝛼𝑏, given the data and fixed model 
parameters 𝜃 is 

(𝑁,𝜇𝑏, 𝜎𝑏, 𝑆|𝑦, 𝑧, 𝜃) =
∏

𝑜∈𝑂
𝜙(𝑦𝑜;𝑤𝑜, 𝜎𝑤)𝜙(𝑧𝑜; 𝑥𝑜, 𝜎𝑥) (14)

where 𝑦 and 𝑧 are vectors of observed white and moulted pups, 𝜃 is 
a vector of parameters that were fixed (see Table  2), and 𝜙(𝑥;𝜇, 𝜎) is 
the PDF of a normal distribution with mean 𝜇 and standard deviation 
𝜎 evaluated at 𝑥.
3 
Table 1
Upper and lower bounds for parameters to be estimated 
by the model.
 Parameter Lower Upper  
 𝑁 max(𝑦 + 𝑧) max(𝑦 + 𝑧) × 5 
 𝜇𝑏 30 70  
 𝜎𝑏 1 20  
 𝛼𝑏 1 10  

2.3. Model fitting

2.3.1. Implementation
We implemented the model in Template Model Builder (TMB). TMB 

uses automatic differentiation to evaluate the Laplace approximation 
of the marginal likelihood and its gradient. This approach requires all 
latent random variables (in our case, the numbers of white and moulted 
pups) to be continuous. The model code is written in C++ but is com-
piled and run using the R package TMB (Kristensen et al., 2016). We fit 
the model with maximum likelihood estimation (MLE) using a multi-
stage approach to prevent the optimization from converging at local 
(rather than global) minima. First, the TMB model was constructed 
with the default values of all parameters (𝑁 , 𝜇𝑏, 𝜎𝑏, and 𝛼𝑏). Default 
starting values were the mean of the lower and upper limits (Table  1) 
for each parameter. Then, the model function was evaluated at 10,000 
sets of gridded initial values and 10,000 sets of randomly selected 
initial values. The default values, the best five value sets from the 
grid search, and the five best value sets from the random search were 
used as initial values for a limited-memory box-constrained Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS-B) optimization in the R package 
optimx (Nash, 2014). The resulting best-fit (minimum negative log-
likelihood) set of parameters was chosen and the model was updated 
accordingly.

2.3.2. Data simulation
To test the model, we simulated data to mimic the serial grey seal 

pup count data that are collected via photographic aerial surveys. We 
simulated data according to the model formulation, with probability 
of being born on each day as described in Eq. (2) and moulting and 
leaving processes according to Eqs.  (4) and (5). We simulated a normal 
observation process, where simulated pups were counted and classified 
according to the probabilities in Table  2 with binomial variance (Eqs. 
(12) and (13)). We generated test datasets with values of 𝑁 from 100 
to 1000 in intervals of 100, fixing 𝜇𝑏 = 50, 𝜎𝑏 = 10, and 𝛼𝑏 = 5 for all 
simulations.

We were interested in investigating how survey parameters (number 
and timing of surveys) would affect model performance. Therefore, we 
simulated first survey days occurring from days 25 to 50 in intervals 
of 5 days and with survey intervals of 1, 5, 10, 15, and 20 days and 
a total number survey days between 1 and 5. Other parameters were 
fixed according to the values in Table  2. To understand how the model 
would perform on existing data, we subsequently subset the simulated 
datasets to include only those with 4 or 5 surveys in intervals of 15 or 
20 days.

2.3.3. Application to real data
To demonstrate model operability on real data, we fitted the model 

to data collected at six colonies of varying size (maximum pup count: 
34-3795; East Scotland: Craigleith, Fast Castle, Inchkeith, Isle of May; 
Southeast England: Blakeney Point and Horsey) in 2018. Data collec-
tion methods are described in Russell et al. (2019), and we compared 
our results to estimates from the pup production model used by Russell 
et al. (2019). Note that this is not a validation, as the true numbers of 
pups (and parameters of the birth curve) are not known.
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Fig. 2. Example of one simulated dataset. In this example, 500 pups were born 
over the course of the season (red dashed line). The black line indicates the 
cumulative number of pups (vertical axis) born by each day (horizontal axis). 
The blue and purple lines represent the number of white and moulted pups 
present on each day, while the blue and purple points (triangles and circles, 
respectively) represent the number of white and moulted pups counted on each 
of six hypothetical survey days. The green line indicates the total number of 
pups on the beach on each day.

Table 2
Values of variables that were fixed in both the 
simulation and the model fitting.
 Variable Value 
 𝐷 125  
 𝜇𝑚 23  
 𝜎𝑚 5  
 𝜇𝑙 31.5  
 𝜎𝑙 7  
 𝑝ow 0.95  
 𝑝om 0.95  
 𝑝cw 1  
 𝑝cm 0.91  

2.3.4. Model evaluation
For both simulated and real datasets, we used the model-estimated 

standard error (SE) to calculate log-normal confidence intervals for the 
number of pups 𝑁 . For the simulated datasets we also calculated the 
relative error of estimates of 𝑁 , 𝜇b, 𝜎b, and 𝛼b.

3. Results

3.1. Simulated data

We simulated 1500 datasets with varying values of 𝑁 , survey start 
day, and survey interval (see Fig.  2 for one example simulation). The 
model failed to converge on one simulated dataset, and the Hessian 
of fixed effects was not positive definite (indicating that the model 
may not have converged and/or that the parameter estimates may be 
unreliable) for an additional 203 simulated datasets. Most (133) of 
these were simulated datasets with only one simulated survey day. We 
excluded these 204 simulated datasets from further analysis.

The accuracy in model estimates of the total number of pups 𝑁
varied with number and timing of simulated surveys, but not with 
the simulated number of pups (Fig.  3). In general, simulated surveys 
with later first survey days, a greater number of surveys, and a greater 
interval between surveys (for a given number of surveys) performed 
best.

After filtering for simulated datasets with 4 or 5 simulated survey 
days and survey intervals of 15 or 20 days, we were left with 239 
4 
Table 3
Model estimates of the number of pups born at each of six colonies, with 2.5% 
and 95% confidence intervals (LCI and UCI, respectively).
 Colony Estimate LCI UCI  
 Craigleith 44.59 41.89 47.47  
 Fast Castle 4317.99 4291.19 4344.96 
 Inchkeith 756.38 744.67 768.29  
 Isle of May 1971.27 1952.13 1990.60 
 Blakeney Point 4763.11 4732.71 4793.72 
 Horsey 2173.03 2151.81 2194.46 

simulated datasets. We used this subset of simulations to evaluate 
model performance given expected characteristics of existing data.

Resulting estimates of the birth curve parameters are shown in Fig. 
4. The model-estimated mean birthday ranged from 49.00 to 50.60 
(−2% to +1% relative error) with a median of 50.00. The model-
estimated standard deviation of the birth curve ranged from 8.86 to 
11.00 (−11% to +10% relative error), with a median of 9.96. The 
model-estimated skew of the birth curve ranged from 2.33 to 10 (−53% 
to +100% relative error) with a median of 4.64. The estimates of the 
mean birthday, standard deviation of the birth curve, and skew of the 
birth curve were approximately unbiased (mean relative error < 1%). 
The resulting model-estimated birth curves were generally similar in 
shape to the simulated birth curve (Fig.  5).

The model estimates of N corresponded to the simulated number 
of pups born (Fig.  6) with CVs ranging from 0.01 to 0.03. The 95% 
confidence intervals included the true simulated value in 95.8% of 
simulations.

3.2. Application to real data

Each of the six colonies were surveyed 4–5 times over the course 
of the 2018 season. The mean interval between surveys was 16 days 
(range 12–21 days). When applied to the resulting count data from 
these surveys, the model converged and provided estimates of total 
number of pups born (Table  3) that mostly agreed with previously 
published estimates for the same data (see Appendix  C). The model-
expected numbers of white and moulted pups corresponded well with 
observations (Fig.  7).

4. Discussion

We developed a state-space model to estimate grey seal pup produc-
tion given serial counts of white and moulted pups at breeding colonies, 
and demonstrated the model’s performance when applied to simulated 
and real data. The model recovered simulated life-history parameters 
(mean, standard deviation, and skew of the birth curve) and total pup 
production across a range of colony sizes and survey scenarios. When 
applied to real data, the model provided pup production estimates for 
six colonies ranging in size from 10s to 1000s of individuals.

The pup production model was implemented in TMB and fitted 
using MLE, which allows us to obtain parameter estimates within a 
frequentist framework. TMB uses automatic differentiation to evaluate 
the Laplace approximation of the marginal likelihood, which enables 
relatively fast computation of the gradient of the marginal likelihood 
with respect to model parameters. This model improves on the model 
presented by Russell et al. (2019) (also see Appendix  C) by allowing 
for misclassification of white pups and by establishing a state-space 
framework that can be extended in future work.

Understanding the assumptions underlying the pup production
model is crucial for interpreting its results and assessing its applica-
bility. The model relies on several key assumptions.

First, the model assumes that pups transition instantaneously be-
tween two distinct life stages: white (approx. 0–22 days of age) and 
moulted pups (approx. 23–32 days of age; Reilly, 1991). In reality, 
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Fig. 3. Marginal plots of simulated values (horizontal axis) versus error in model estimates of the number of pups N for simulated number of pups (first panel) 
and survey properties (first survey day, number of surveys, and survey interval; remaining panels) across 1500 simulated datasets. Grey points indicate relative 
error in the estimate of number of pups from individual simulations, while the black points are the median and the black bars span the 2.5% to 95% quantiles 
of relative error across all simulations.
Fig. 4. Model-estimated mean birthday and skew and standard deviation of the birth curve (horizontal axis) for 239 simulated datasets. The red vertical lines 
show the true simulated values.
moulting is a continuous process that takes place over the course of 
6–8 days (approx. 16–23 days of age), during which time the pups 
are considered to be moulting. The counts of white pups are therefore 
comprised of both white and moulting pups. This moulting process has 
previously been described as a separate stage (Davies, 1949; Radford 
et al., 1978; Bowen et al., 2003). Misclassification of pups is most 
likely to occur during this intermediate stage between white and fully 
moulted; i.e., pups in this stage might be correctly classified as white 
pups or misclassified as moulted pups. Therefore, better representation 
of the moulting process in the model may allow us to better understand 
5 
misclassification errors, and ultimately improve precision and accuracy 
of parameter estimates.

We also assume that pups do not move between colonies during the 
breeding season. However, when colonies are close to each other, pups 
may be born at one colony and, upon leaving for sea (or being swept 
to sea by weather events), haul out at another nearby colony (Boyd 
et al., 1961) to complete the post-weaning fast. Movement between 
colonies during the breeding season has been demonstrated in other 
pinniped pups as well (Goldsworthy et al., 2021). If there is not an 
equal exchange of pups between colonies, this movement could lead to 
misleading counts if a pup is recorded in one survey at its birth colony 
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Fig. 5. Simulated (black line) and model fitted (grey lines) birth curves from 
239 simulated datasets indicating the probability of being born (vertical axis) 
on each day of the season (horizontal axis).

Fig. 6. Simulated (horizontal axis) versus model-estimated (vertical axis) 
number of pups for 239 simulated datasets. Each individual simulation is 
shown by a black point with grey 95% confidence intervals. The red line 
indicates 1:1.

and in a subsequent survey at a different colony, potentially resulting 
in biased estimate of pup production and mean birth date.

Since moulting and leaving are modelled as independent processes, 
our approach assumes that pups can leave the colony before completing 
the moult process. Pups that do leave before completing the moult 
process are most likely to move to other colonies or become a mortality 
(i.e., be swept to sea and not survive; Russell et al., 2019). For the ma-
jority of pups, departure for the sea occurs after the moult is complete. 
If our assumption is incorrect, and pups never leave before completing 
the moult, total pup production could be overestimated. If we were 
certain that pups could not leave the colony before completing the 
moult process, we could reformulate the process model so that leaving 
the colony would be conditional on moulting.

We assume that all pups, regardless of their birth day within the sea-
son, progress through life stages at the same rate. It is possible, though, 
that pups born later in the season experience different developmental 
timelines (Coulson and Hickling, 1964). For instance, the post-weaning 
fast for these late-born pups might be triggered sooner compared to 
those born early in or at the peak of the season. Consequently, their 
moult period may be shorter, and they may depart for the sea at 
younger ages. Our assumption of fixed life-history parameters could 
misrepresent the timing of transitions and departures, leading to biased 
6 
estimates of total pup production. It may be more realistic to allow life-
history parameters to vary over the course of the season (de Valpine 
et al., 2014). However, this would likely require substantially more data 
and may not impact pup production estimates, since pups born towards 
the end of the season would only be surveyed as white pups.

The model assumes that all pups remain alive from birth until 
they leave for the sea, with deceased pups being absorbed into the 
white pup class in the data. The process model therefore effectively 
implies there is no mortality, which, if carcasses are observable for 
substantially longer than the white phase, could lead to overestimation 
of pup production by counting deceased pups as though they are alive. 
Accounting for mortality in the model is challenging due to several 
factors. Mortality rates may vary over the course of the season and 
by colony. On some colonies, pups that are born earlier in the season 
have a higher survival rate than pups born later in the season due to 
overcrowding during the peak of births (Coulson and Hickling, 1964). 
Depending on the colony and time of season, mortality rates can vary 
by up to 20% (Coulson and Hickling, 1964; Boyd and Campbell, 1971; 
Twiss et al., 2003; Quaggiotto et al., 2018). Variability in geographic 
and environmental conditions across colonies influences the duration 
carcasses remain visible, with pups close to the shore being washed out 
to sea more quickly than those further inland. Explicitly modelling dead 
pups and removing them from the white pup count would likely lead to 
more accurate population estimates. However, this refinement would 
also introduce additional parameters (i.e., mortality rate and carcass 
persistence rate) and complexity into the model.

Another limitation is the use of a deterministic process model, which 
does not capture the inherent stochasticity in biological processes. 
Adding stochasticity to the process model (both in data generation and 
in fitting) would likely increase the uncertainty of parameter estimates, 
including in the estimates of pup production. We used a normal approx-
imation to the binomial distribution in both the simulation and model. 
This approximation can be negatively biased particularly when the 
number of pups and/or number of surveys is small; in future a normal 
approximation with a continuity correction may be more appropriate.

An important piece of future work will be to conduct analyses 
to assess how sensitive the model results are to changes in fixed 
parameters. Specifically, the model relies on assumptions about time 
to moult, time-to-leave (TTL), the probability of observation (Pobs), 
and the probability of misclassification. Research by Russell (2015) has 
shown that TTL varies among colonies, and the currently used value 
of 31.5 days may be too low for many colonies, potentially leading to 
overestimates of pup production. Collecting more empirical data would 
enable more accurate estimation of these parameters. Additionally, it 
has been assumed, based on comparisons between ground and film 
aerial surveys, that pups are counted with a 95% detection rate (Pobs) 
for both film and digital surveys (Thompson and Wyile, 1985). How-
ever, this value may be too high as it does not account for factors such 
as the possibility of pups being missed due to being washed out to sea 
or obscured by geographic features.

We formulated this model with the eventual goal of building a 
hierarchical model encompassing multiple monitored grey seal colonies 
in the UK. A hierarchical approach would introduce information shar-
ing across colonies so that parameters and their associated uncertainty 
could be estimated at a colony or regional level, leveraging information 
from data-rich colonies and years to improve estimates in data-poor 
colonies and years. A hierarchical model could also be used to inves-
tigate variation and/or change in grey seal breeding phenology over 
space and time.

We anticipate this model will have applicability to other systems 
in where multiple, imperfect count surveys are conducted to estimate 
abundance of open populations. The mechanistic nature of the process 
model should make it easily adaptable to other systems. This may be 
particularly useful for certain seabirds, diseases, and other biological 
and ecological processes with latent stages and imperfect detection.
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Fig. 7. Model-expected number (vertical axis) of white (blue) and moulted (purple) pups on each day of the season (horizontal axis) at six grey seal colonies 
(panels). Points (triangles and circles for white and moulted pups, respectively) represent real observations of white and moulted pups.
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Appendix A. Glossary of symbols used

See Table  A.4.

Appendix B. Parameterization of the skew normal distribution

The skew normal distribution was first described by O’Hagan and 
Leonard (1976). The distribution is typically parameterized in terms 
of location 𝜉, scale 𝜔, and shape 𝛼. These are related to the mean 𝜇, 
standard deviation 𝜎, and skewness 𝛿 by the following equations.

𝛼 = 𝛿
√

(B.1)

1 − 𝛿2

7 
Table A.4
Glossary of symbols used in the manuscript. Where applicable, units are 
indicated in parentheses.
 Symbol Definition  
 𝑁 Total number of pups born at a colony within a season  
 𝜇𝑏 Mean birth day (days)  
 𝜎𝑏 Standard deviation of birth day (days)  
 𝛼𝑏 Skew of birth day (days)  
 𝜇𝑚 Mean age at moulting (days)  
 𝜎𝑚 Standard deviation of age at moulting (days)  
 𝜇𝑙 Mean age at leaving (days)  
 𝜎𝑙 Standard deviation of age at leaving (days)  
 𝑝𝑏 Probability of being born on each day of the season  
 𝑝𝑚 Probability of moulting at each age  
 𝑝𝑙 Probability of leaving at each age  
 𝑏 Number of pups born on each day of the season  
 𝑚 Number of pups moulting on each day of the season  
 𝑙 Number of pups leaving the colony on each day of the season  
 𝑤 Number of white pups present on the colony on each day of the season  
 𝑥 Number of moulted pups present on the colony on each day of the season 
 𝑦 Number of white pups observed on each survey day  
 𝑧 Number of moulted pups observed on each survey day  
 𝑝𝑜𝑤 Probability of observing white pups  
 𝑝𝑐𝑤 Probability of correctly classifying white pups  
 𝑝𝑜𝑚 Probability of observing moulted pups  
 𝑝𝑐𝑚 Probability of correctly classifying moulted pups  
 𝑑 Day of the season  
 𝐷 Maximum length of season (days)  
 𝑎 Age (days)  
 𝐴 Maximum pup age (days)  

𝜔 = 𝜎
√

1 − (2𝛿2∕𝜋)
(B.2)

𝜉 = 𝜇 − 𝜔𝛿
√

2
𝜋

(B.3)

Appendix C. Comparison to model from Russell et al. 2019

A model to estimate grey seal pup production in Scotland from 
serial counts of pups at breeding colonies was developed c. 30 years 
ago by Lex Hiby, and first documented in a peer-reviewed publication 
by Russell et al. Russell et al. (2019). We refer to this model as 
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Fig. C.8. Estimated birth curves from the model presented in the main body of the manuscript (blue dashed lines) and from the Hiby model (red lines) when 
applied to data from six grey seal colonies.
Fig. C.9. Point estimates and 95% CIs of total pup production at six colonies using the model presented in the main body of the manuscript (black dots and 
lines) with the Hiby model estimate of pup production (red crosses).
the ‘Hiby model’. The Hiby model has been replicated in R and is 
fitted using maximum likelihood estimation (MLE; Russell et al., 2019; 
SCOS, 2024). Since the Hiby model was developed, other studies have 
increased our understanding of the pup production and survey pro-
cesses. For example, the Hiby model assumes that white pups cannot be 
misclassified as moulted pups. However, white pups are sometimes mis-
classified as moulted pups. Therefore, an additional model parameter is 
required. Incorporating these more complex mechanisms of observation 
error requires an age-specific model and cannot be encompassed within 
the Hiby model framework.

We expect the version of the model presented in the main body of 
the manuscript to produce results similar to those of the Hiby model 
when parameters are set at the same values. To evaluate this, we 
compared the performance of the Hiby model to that of the model 
presented in the main body of the manuscript when presented with real 
data.

One major difference between the Hiby model and the model pre-
sented in this manuscript is that the former uses a log-normal birth 
curve, while the latter uses a skew-normal. Therefore, the parameters 
of the birth curve estimated by the two models are slightly different.

We ran both models on the same data as presented in the main 
text of the manuscript. We found that the estimated birth curves were 
8 
visually similar between the two models (Fig.  C.8) and the Hiby model 
estimates fell within the 95% CIs of the new model estimates for 5/6 
colonies (Fig.  C.9).

Data availability

As per the methods section of the manuscript, all data and code to 
implement these analyses is available at https://github.com/eirenjaco
bson/HgPupProdModel.
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