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Abstract20

Close-kin mark-recapture (CKMR) is a promising approach for assessing population size of21

species which have been di!cult to survey using more traditional methods. Here, we combine22

individual and close-kin mark-recapture in a single modelling framework (ICKMR) and provide23

an example of study design using this approach for Pacific walrus (Odobenus rosmarus divergens).24

We develop the ICKMR model and test it using simulated datasets, then use properties of the25

pseudo-likelihood to investigate the expected precision in estimates of abundance with di"erent26

proposed survey designs. Our motivating example, the Pacific walrus, is an ice-associated marine27

mammal found in the Bering and Chukchi seas, where it is an important resource for Indigenous28

peoples. Pacific walrus abundance declined in the late 20th century, and it is currently a species of29

conservation concern due to potential impacts of climate change, particularly the loss of sea ice. To30

reduce uncertainty in population size estimates, researchers undertook a genetic mark-recapture31

sampling campaign from 2013-2017 and collected tissue samples from over 8,000 individuals. An-32

other campaign of a similar scale is ongoing (2023-2028). While sample collection was designed33

for individual mark-recapture, advances in CKMR methods and associated molecular techniques34

mean that these samples could also be suitable for CKMR. The advantages of CKMR over mark-35

recapture include an increased e"ective sample size (because each individual tags itself and its36

parents, siblings, and o"spring) and additional insights into demographic quantities of interest.37

To make best use of genetic samples, we combine individual mark-recapture (IMR) with CKMR38

(ICKMR) and investigate whether di"erent sampling strategies can increase precision in estimates39

of abundance. Our modeling approach includes special considerations for walrus life-history, in-40

cluding a multi-year inter-birth interval. We found that expected CVs of the ICKMR estimates of41

abundance, adult female survival, juvenile female survival, and proportion of breeding females are42

lower than those expected from IMR alone, and with ICKMR, fewer years of future sampling can43

be conducted to obtain su!cient precision in estimates of abundance. This work demonstrates the44

utility of ICKMR and could be applicable across a variety of taxa.45
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1 Introduction46

Estimation of abundance and other demographic parameters such as survival are a key part of wildlife47

management and conservation. Traditional mark-recapture analysis (Williams et al., 2002) can deliver48

estimates with low bias and uncertainty, provided enough individual animals (i) are identifiable by49

natural, artificial, or genetic “marks” and (ii) can be recaptured over time. If genotypes are used50

as marks, as in genetic individual mark-recapture (IMR; Palsbøll et al., 1997), then kinship patterns51

amongst samples (e.g., parents, siblings) contain additional demographic information (Skaug, 2001).52

Close-kin mark-recapture (CKMR; refer to Bravington et al., 2016) is a framework for using pairwise53

kinships, as inferred from genotypes, to estimate abundance and demographic parameters. CKMR54

provides additional flexibility compared to IMR because it is not essential to recapture individuals, so55

lethal (e.g., from sampling, harvest, or natural mortality) and/or non-lethal samples can be used. As56

of 2025, most CKMR projects have focused on commercial fish (e.g., Davies et al., 2020) or sharks57

(e.g., Hillary et al., 2018), but a few have been conducted on mammals (e.g., Conn et al., 2020; Taras58

et al., 2024; Lloyd-Jones et al., 2023).59

The principle behind CKMR is that every individual has one mother and one father, so each60

captured individual “tags” itself and its parents. For a given sample size, a large population is expected61

to have fewer “recaptures” of closely related individuals compared to a small population. In practice,62

CKMR data are derived from pairwise comparisons among samples while considering covariates such63

as age, size, and sex. Each pair of samples is tested for a series of kinship relationships such as parent-64

o!spring, half-sibling, or self (the alternative being “unrelated”, i.e., none of the above). The CKMR65

model has two components: (i) a population-dynamics model driven by the demographic parameters;66

and (ii) formulae for expected frequencies of di!erent kinship types in pairwise comparisons that are67

conditional on sample covariates and demographic parameters. By combining the kinship data with68

the population dynamics model, parameters can be estimated using maximum likelihood or Bayesian69

methods.70

The success of CKMR depends on whether the data collected contain enough close-kin pairs to71

yield acceptable precision in parameter estimates. The chance of success is greatly increased by a72

study design exercise that evaluates the e!ects of sample age, size, and sex composition of sampled73

animals, precision of covariate measurements, and study duration, while taking into account the species’74

life history, ecology, and physiology (Sévêque et al., 2024; Petersma et al., 2024; Merriell et al., 2024;75

Swenson et al., 2024; Waples and Feutry, 2022). The pairwise comparison framework leads to analytical76
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results for the expected number of kin pairs and the parameter-estimation variance, given the number77

of samples and associated covariates, so that simulation is not essential for study design. Nevertheless,78

simulation can be used to check kinship probability formulae, robustness to model simplifications, and79

design setup.80

In this study, we perform and verify CKMR design calculations for the Pacific walrus (Odobenus81

rosmarus divergens; hereafter, walrus), to demonstrate the design process and the utility of CKMR.82

Our goal was to understand how di!erent possible demographic scenarios and design choices would83

impact precision of estimates of adult female abundance, adult female survival, and juvenile survival.84

In addition, in most CKMR applications to date, self-recaptures were unlikely or impossible (e.g.,85

when sampling is lethal). Lloyd-Jones et al. (2023) included IMR results in a CKMR study but did86

not integrate both datasets into a single model. Bravington et al. (2014) extended CKMR to include87

IMR as an additional kinship type (ICKMR), whereby pairwise genetic comparisons can show that88

two samples are from the same animal. They found that the expected CV in estimates of abundance89

decreased from approximately 30% with IMR alone to approximately 20% with ICKMR. Here, we90

explore design scenarios using IMR alone versus a combined ICKMR approach, and we find that the91

latter can be used to reduce the amount of survey e!ort required for adequate monitoring.92

1.1 Pacific walrus biology and background93

The Pacific walrus is a gregarious, ice-associated pinniped inhabiting continental shelf waters of the94

Bering and Chukchi seas. During winter (when sea ice forms south of the Bering Strait), almost all95

walruses occupy the Bering Sea (Fay, 1982). In summer (when sea ice is absent from the Bering Sea)96

almost all juvenile and adult female walruses, and some adult male walruses, migrate north to the97

Chukchi Sea. When walruses rest o!shore on sea-ice floes, their distribution is dynamic because it98

generally follows the marginal ice zone, which is a moving, changing habitat which contains a mix99

of ice floes and open water). Pacific walruses are considered a single, panmictic population (Beatty100

et al., 2020) and are managed as a single stock (US Fish and Wildlife Service, 2023). Adult female101

walruses move between US and Russian waters of the Chukchi Sea over the course of a single season102

(Jay et al., 2012; Udevitz et al., 2017). Female walruses breed in winter and give birth to a single103

calf approximately 14-15 months later (Fay, 1982; Robeck et al., 2022). Mothers and calves maintain104

a close physical relationship for the first year, and weaning generally occurs between the first and105

second year (Fay, 1982), though juveniles may travel with their mother until 3 years of age (Beatty106
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et al., 2020). Female walruses may have their first calf at 6 years of age; male walruses do not reach107

sexual maturity until 15 years of age (Fay, 1985). Maximum walrus lifespan is approximately 40 years108

(Fay, 1982). Walruses can be aged from their teeth (Kryukova, 2014) and work is ongoing to develop109

an epigenetic clock for walrus biopsy samples (i.e., estimated ages within 10% of true values; Robeck110

et al., 2023a).111

Abundance and demographic rate estimates are crucial for understanding population status and112

trends, as well as for co-developing harvest management plans. Continued sea-ice loss and a con-113

comitant increase in the intensity and expansion of industrial and shipping activities in Pacific Arctic114

waters (Silber and Adams, 2019) are expected to drive a substantial population decline (US Fish and115

Wildlife Service, 2011; MacCracken et al., 2017; Johnson et al., 2024a; Johnson et al., 2024b). Sub-116

sistence walrus harvests in Alaska and Chukotka exceed 4,000 animals annually (US Fish and Wildlife117

Service, 2023), and Indigenous peoples and co-management agencies need information on the status of118

the walrus population to manage these harvests sustainably. Furthermore, in the United States, the119

Marine Mammal Protection Act (MMPA; P.L. 92-522; 16 U.S.C. §§1361-1423h) requires a determina-120

tion of potential biological removal for walruses, which, in turn, requires a precise abundance estimate121

(Gilbert, 1999; Wade and DeMaster, 1999).122

Scientists have attempted to ascertain walrus population size since at least 1880 (Fay et al., 1989),123

and until very recently, the most concerted e!ort was the 1975-2006 range-wide aerial surveys conducted124

collaboratively by the USA and the USSR and, later, the Russian Federation. However, abundance125

estimates from these surveys were biased and imprecise. Aerial surveys were abandoned after the126

2006 survey which yielded a 95% confidence interval (CI) of 55,000–507,000 animals and coe"cient127

of variation (CV) of 0.93 for the population abundance estimate of 129,000 despite a rigorous design,128

innovative field methods, and sophisticated analyses. The imprecision in the estimate resulted from129

the walrus population being widely dispersed with unpredictable local clumping (Speckman et al.,130

2011; Jay et al., 2012). The first rigorous walrus survival rate estimates were obtained within the past131

decade via Bayesian integrated population models (IPMs), which combined multiple data sources to132

estimate demographic rates and population trends over multiple decades (Taylor and Udevitz, 2015;133

Taylor et al., 2018). However, problems with the aerial survey data continued to preclude conclusions134

about population abundance in the IPMs (Taylor and Udevitz, 2015).135

In 2013, the US Fish and Wildlife Service (FWS) began a genetic IMR project to estimate walrus136

abundance and demographic rates (Beatty et al., 2020; Beatty et al., 2022). Genetic “marking” via skin137
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biopsy samples (Palsbøll et al., 1997) is preferable to traditional marking techniques because walruses138

are extremely di"cult to handle physically. In five summer research expeditions, biologists tried to139

biopsy a representative sample of walruses. In 2013, 2014, and 2016, biopsy samples were collected in140

US waters; in 2015 and 2017, biopsy samples were collected in both US and Russian waters (Beatty141

et al., 2022). Sampling focused on groups of adult females and juveniles because these classes are the142

demographically important population segments of this polygynous species (Fay, 1982; Beatty et al.,143

2022). Further details are given in Beatty et al. (2020) and Beatty et al. (2022). Data analysis from the144

2013–2017 expeditions used a Cormack-Jolly-Seber multievent model to estimate survival rates, and a145

Horvitz-Thompson-like estimator to obtain population size. The total abundance estimate of 257,000146

had a 95% credible interval (CrI) of 171,000–366,000 (CV=0.19; Beatty et al. 2022). Although this147

was more precise than historical estimates from surveys (e.g., Speckman et al., 2011), the IMR study148

required extensive investment of human and financial resources. Thus, FWS and the US Geological149

Survey (USGS) initiated a second generation of expeditions in 2023 to estimate walrus abundance and150

vital rates with CKMR. Initially, expeditions were planned to occur each June from 2023-2027. A151

successful expedition to collect biopsy samples and other data was completed in 2023, but no samples152

were collected in 2024. Here we explore ICKMR as a way to substantially increase the information153

content of IMR without increasing sampling e!ort.154

2 Methods155

Our methods consist of two main components: (2.1) ICKMR model development and (2.2) simulation156

for model checking and design scenarios. To develop the ICKMR model, we (2.1.1) selected the kinship157

categories that should be common in the samples as well as informative about recent abundance,158

(2.1.2) built a walrus-specific population dynamics model capable of handling those kinships, (2.1.3)159

formulated pairwise kinship probabilities, (2.1.4) defined the pseudo-likelihood, and (2.1.5) performed160

design calculations. We then (2.2.1) developed an individual-based simulation with walrus life history,161

(2.2.2) used this simulation to check our ICKMR model, and (2.2.3) generated simulated datasets from162

di!erent demographic scenarios of interest with which we evaluated expected precision in parameter163

estimates under di!erent possible survey designs.164
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2.1 ICKMR model development165

2.1.1 Kinship Types166

First, we considered which types of kinship may occur and are possible to detect in the population of167

interest given our knowledge of life history, resolution of genetic methods, and survey design. CKMR168

datasets often contain multiple genetically detectable kinships, all potentially providing some infor-169

mation about population dynamics. Potential kinships fall into three basic categories (though refer170

to Discussion): parent-o!spring pairs (POPs); full-sibling pairs (FSPs); and second-order kin pairs171

(2KPs, comprising half-sibling pairs (HSPs), grandparent-grandchild pairs (GGPs), and full-thiatic172

pairs (FTPs), such as aunt-nephew). Not all those possible kinships would be informative about the173

most important aspects of walrus dynamics: abundance, trend, and mortality.174

We ignored paternal HSPs and father-o!spring pairs (FOPs) and did not model male adults at175

all because of irresolvable confounding between adult male abundance and persistent variability in176

breeding success (which is likely given lek-based breeding; refer to Appendix S1: Section S1 for more177

details). We did not include within-cohort HSPs or FSPs because walruses have a litter size of one and178

female walruses are unlikely to repeatedly mate with the same male. Similarly, we did not consider179

FTPs. GGPs are di"cult to distinguish from HSPs, but we assume that they would be rare in our180

survey sample and could be excluded (refer to Appendix S1: Section S2). We are thus left with three181

kinships: mother-o!spring pairs (MOPs), maternal half-sibling pairs (XmHSPs), and self-pairs (SPs)182

where an individual is captured at least twice and in di!erent years. Note that male juvenile samples,183

which are common, are used as potential o!spring or XmHSPs (i.e., they mark their mothers), but184

not as potential SPs or fathers. For model development and design, we assume that all kinship types185

are detected accurately.186

2.1.2 Life history and population dynamics187

Stage-structured quasi-equilibrium dynamics In order to formulate kinship probability equa-188

tions, CKMR requires a population dynamics model. In this case, we only needed to model females. We189

used a stage-structured (juvenile/adult), rather than fully-age-structured approach because (i) most190

reproductive female adults are expected to have similar reproductive capacity and chance of survival191

and (ii) stage-structured models are simpler to implement for CKMR and require fewer parameters.192

Given these factors, and the broad goal of estimating female adult abundance, a stage-structured193

model should be adequate for design purposes. We also opted not to include calves in the model194
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because early-life-history survival (before animals are easily sampled) would require extra parameters195

that are di"cult to estimate directly. In e!ect, calf survival and birth rate are combined into overall196

rate-of-change in abundance, which becomes a single parameter to be estimated.197

The parameters to be estimated were adult female and juvenile female survival rates (ωA and ωJ),198

adult female abundance in some reference year (Ny,A), and population trend (r). We used two stages:199

juveniles aged 1–5, and adults aged 6+ (the first age at which an accompanying calf is common). We200

assumed constant survival within each stage (ωA and ωJ). Because weaning occurs between 1 and 2201

years of age (Fay, 1982) and most adult female mortality occurs during the subsistence harvest in the202

spring when 1-yr-old walruses are nearly 2, we assumed that o!spring survival from age 1 onwards was203

independent of its mother’s survival. This is consistent with Taylor et al. (2018). While we assume204

that o!spring survival is independent from age 1, we do not assume that sampling is independent until205

age 6 (refer to Section 2.1.3). Our model assumed that adult female abundance increased or decreased206

exponentially over the period covered by the population dynamics, which we set at 2000–2028. The207

model needs to cover all birth dates of samples that are used as potential o!spring, XmHSPs, or208

SPs; choosing a lower limit of 2000 thus discards a few samples, but because there was more intense209

harvesting prior to 2000 and large changes in abundance (Taylor and Udevitz, 2015; Taylor et al.,210

2018) pre-2000 age composition is di"cult to model.211

Adult female abundance in year y (Ny,A) is described by212

Ny,A = Ny0,Ae
r(y→y0) (1)

where e
r is the rate of population change and r = 0 corresponds to stasis.213

To incorporate self-recaptures in the close-kin model, we must assume stable age composition214

within stage. For that purpose, we assume that age composition over the modeled period is adequately215

described by the stable-age or “quasi-equilibrium” distribution consistent with survival ωA and rate of216

change e
r. As shown in e.g., Keyfitz and Caswell (2005) Chapter 5, this is Ny,a → Ny,Aω

a
Ae

→ra.217

The breeding cycle Female walruses, like many other animals, exhibit “skip-breeding”, taking gaps218

of one or more years between births. This intermittent breeding can cause bias in parameter estimates219

if not included in the CKMR model (Waples and Feutry, 2022; Swenson et al., 2024). Because XmHSPs220

will be important for walruses, we decided to include a sub-model for skip-breeding with parameters221

to be estimated from the CKMR data.222
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Walruses have a litter size of one, and due to a 14-15 month gestation, they cannot give birth in223

consecutive years (Fay, 1982; Katsumata et al., 2020; Robeck et al., 2022). They are also unlikely to224

give birth every second year (Taylor and Udevitz, 2015; Fay et al., 1997; Taylor et al., 2018; Robeck225

et al., 2023a). We used a first-order Markov model to describe the walrus breeding cycle (Fig. 1).226

We assume three breeding states: (S1) pregnant; (S2) with young-of-the-year (YOTY) calf; or (S3)227

mature and not in S1 or S2. From state S1 (pregnant), next year’s state must be S2 (with YOTY228

calf). From state S2, a female may next year either return to state S1 (become pregnant again), with229

probability ε2, or move to state S3 (quiescent: neither pregnant nor with calf) with probability 1↑ε2.230

From state S3, she will either move to state S1 (become pregnant) with probability ε3, or remain in231

state S3 with probability 1↑ ε3.232

Females enter the breeding cycle at state S3 (i.e., reach sexual maturity) at age 4, and therefore233

sometimes become pregnant at age 5 and give birth at age 6 (Fay, 1982). Depending on the values of234

ε2 and ε3, this leads to fluctuations in e!ective fecundity (i.e., probability of being in state S2) over the235

first few years of adult life. Both ε2 and ε3 are estimated within the CKMR model, ultimately based on236

the observed distribution of birth gaps between XmHSPs. We do not use any data on whether females237

were with or without calf when sampled, and we cannot distinguish between fine-scale aspects of the238

reproductive cycle, such as di!erences in fertilization/implantation rates versus pregnancy failures or239

neonatal deaths. Thus, because the transition from S1 (pregnant) to S2 (with YOTY calf) is set to 1,240

reproductive failures are subsumed by the fecundity rate.241

We later use two quantities derived from the breeding cycle. First, we calculated the (average)242

proportion of adult females in S2 (with YOTY), ϑ̄2. Let ! be the (3↓3) transition matrix implied by243

the breeding cycle (Fig. 1). Taking the eigendecomposition of !, we extracted the second element of244

the eigenvector with the largest eigenvalue to obtain ϑ̄2 (Caswell, 2001). Second, we defined fecundity245

as a function of age B(a), where the numerator in Eq. 2 gives the probability that any female of age246

a is in state S2. Thus,247

F (a) ↭ P [B (a) = 2]

ϑ̄2
, (2)

immature animals have fecundity 0, and an average adult has fecundity 1.248
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2.1.3 Kinship probabilities249

Having formulated our population dynamics model, we now quantify the probability of relatedness250

between individuals. These probabilities will be used in the pairwise comparison terms summed in the251

pseudo-log-likelihood. The kinship probabilities are linked to the population dynamics model by shared252

parameters. For walruses, we considered three types of kinship: mother-o!spring pair (MOP), cross-253

cohort maternal half-sibling pair (XmHSP), and self-pair (SP), which represents individual recaptures254

in di!erent years.255

To establish demographic kinship probabilities between two sampled individuals, we apply the256

principle of expected relative reproductive output (ERRO; Bravington et al., 2016). For example, the257

probability that a given adult female is the parent of an independently sampled o!spring is the ratio258

of that adult’s expected fecundity to the total fecundity of all parents at the time the o!spring was259

born. We denote the kinship for individuals i and j as Kij , which in our case may be MOP, XmHSP,260

SP, or unrelated pair (UP). Sampling was assumed to occur on an annual basis, i.e., a maximum of one261

sample per individual per year would be used and any within-year individual recaptures discarded. In262

the case of MOPs and XmHSPs, if recaptures exist in di!erent years, we ensure that only one sample263

(the last) from each individual is used (so “sample” and “individual” are interchangeable terms). We264

can then be certain that the individual was alive until the time of the last sample, and so, conditional265

on age, could have produced o!spring at least up until that time. In addition, using only the last266

sample improves precision in estimates of survival because the individual definitely survived to age267

at last sample. For SPs, we consider the first and last sample from each individual (in which case,268

“sample” and “individual” have di!erent meanings) to maximize the interval over which we can be269

certain that the individual was alive.270

We use the following notation: individual i, sampled at age ai in year yi with birth year bi ↭ yi↑ai.271

As noted above, we only estimate adult female abundance. However, we use notation that could be272

adopted in models that estimate both juvenile and adult female abundance. In our notation, Ny,A273

refers to adult female abundance in year y. We include the A subscript for clarity throughout the274

manuscript. In our derivation of juvenile female abundance (Appendix S1: Section S3), we simply275

change the second subscript to J for juvenile, Ny,J. Thus, we generalize this notation to Ny,d where276

y denotes year and d denotes developmental stage (A = adult or J = juvenile). We define the binary277

variable L to indicate lethality of sampling (Li = 1 indicates lethal sampling for sample i). We use I()278

as an indicator function, returning 1 when the condition inside the brackets is true, else 0. Kinship279
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probabilities are functions of demographic parameters such as ωAand Ny0,A; we use ω as shorthand for280

this set of parameters, which become explicit in later iterations of the formulae.281

We assumed that epigenetic age estimates will be available for all samples, based on an epigenetic282

aging approach (Polanowski et al., 2014; Robeck et al., 2023b). Our model could be extended to283

incorporate errors in estimated age (with standard deviation assumed known, i.e., after calibration of284

epigenetic age to known-age samples), though the results here assume no errors; refer to the Discussion285

section.286

Mother-o!spring pairs (MOPs) Consider a comparison between a potential mother i, to a po-287

tential o!spring j. We restrict our analysis to comparisons that satisfy the following:288

• i is female (though j need not be);289

• aj ↫ 1 (no YOTY samples are used);290

• yi ↔= yj ↗ aj ↘ ab (do not compare potential o!spring and mothers sampled in the same year291

unless o!spring age is at least the age of first birth, ab = 6);292

• bj ↫ 2000 (birth year of potential o!spring must be greater than or equal to 2000, because293

population dynamics starts at year 2000).294

Walruses may accompany their mothers until age 3 (Beatty et al., 2020). To ensure independence, we295

do not compare potential o!spring that are juveniles (≃ 5 years old) to potential mothers sampled in296

the same year. However, we do compare potential o!spring that are adults (↘ 6 years old) to potential297

mothers sampled in the same year. Furthermore, we compare all potential o!spring to all potential298

mothers sampled in di!erent years, regardless of age, because we assume that the sampling events are299

independent.300

We can now distinguish two cases: yi < bj (potential mother sampled before potential o!spring301

birth) and yi ↫ bj (potential mother sampled after potential o!spring birth).302

For yi < bj , individual i still has to survive one ore more years in order to be individual j ’s mother303

(note that i may be immature when sampled, but mature by the time of j ’s birth). In this case i’s304

sampling must be non-lethal (Li = 0). The MOP probability is305

P [Kij = MOP|ai, yi, bj , Li = 0,ω] =
Ri(bj |yi, ai)

R+(bj)
(3)
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where Ri(bj |yi, ai) is the expected reproductive output (ERO) of individual i in year bj given i is306

age ai in year yi. For the denominator, R+(bj) is the total reproductive output (TRO) of the whole307

population in year bj . ERO and TRO are in units of "number of calves" (males and females) here308

(though generally their units are arbitrary but matching). TRO is the total number of adult females309

in the population when j is born, NbjA, multiplied by the proportion of females with calves (breeding310

state S2), ϑ̄2: R
+(bj) = ϑ̄2Nbj ,A.311

For the numerator, i’s ERO has two components: first, she has to survive; second, she has to be312

calving (breeding state 2) in bj :313

Ri (bj |yi, ai) = ” (bj ↑ yi, ai)P [B (ai + bj ↑ yi) = 2] , (4)

where ” (#t, a) gives the probability of survival for #t years, starting from age a (product of annual314

juvenile and adult survival probabilities). B (a) is an individual’s breeding state at age a, which here315

is individual i’s age at bj (ai + bj ↑ yi), assuming she survives.316

Then, using our definition of fecundity at age, Eq. (2), we have317

P [Kij = MOP|ai, yi, bj , Li = 0, yi < bj ,ω] =
” (bj ↑ yi, ai)F (ai + bj ↑ yi)

Nbj ,A
. (5)

If i is sampled after the birth of j (bj < yi), then i was either alive at j’s birth or was not yet318

born, eliminating the need to account for survival or lethality terms. However, i may not have reached319

reproductive maturity by bj . Letting F (a ↬ 0) = 0,320

P [Kij = MOP|ai, yi, bj , bj < yi,ω] =
F (ai ↑ (yi ↑ bj))

Nbj ,A
. (6)

Maternal half-sibling pairs (XmHSPs) To find probabilities of cross-cohort maternal half-sibling321

pairs (XmHSPs), we check whether individual k and individual l have the same mother. We impose322

the following criteria:323

• bl > bk (avoiding double-counting);324

• bk ↔= bl (because walruses give birth to a single o!spring at a time);325

• bk ↫ 2000 and bl ↫ 2000 (birth years must be greater than or equal to 2000, because population326

dynamics starts at 2000).327

12



If we call m the mother of k, what is the probability that l’s mother was m? We know that m was328

alive, mature, and in breeding state S2 at k’s birth, and that m survived at least one more year after329

k’s birth, otherwise k would not have survived (through its dependency on its mother) and would not330

have been sampled. In order for m to also be l’s mother, three conditions must be met:331

1. m survives until bl + 1, because we know l survived to be sampled at 1+ years of age;332

2. m is in breeding state S2 in bl;333

3. amongst all the females that are alive and in breeding state S2 in year bl, m is the mother.334

Let ” (#t) be the adult probability of surviving another #t years, and recall ! is the breeding cycle335

transition matrix. The three-element probability vector of an animal being in each state (S1, S2, S3) at336

time t is p[t]. Then p[t+1] = !p[t]. Now define p[0] = (0, 1, 0)↑which is the three-element probability337

vector of m’s breeding state at k’s birth (certain state 2), let Bm (y) be m’s actual breeding state in338

any year y, and recall ϑ̄2 is the proportion of adult females in breeding state S2. Then339

P [Kkl = XmHSP|bk, bl, ϖ]

= P [Klm = MOP|Bm (bk) = S2,m alive at bk + 1, bl, ϖ]

=
” (bl ↑ bk)

[
!bl→bkp[0]

]
2

Nbl,Aϑ̄2
, (7)

where
[
!bl→bkp[0]

]
2

is the second element of the vector, i.e., the probability that m (given she was340

alive) was again in breeding state S2 at l ’s birth.341

HSPs are one of several “second-order” kin-pairs that are practically indistinguishable genetically342

hence cannot be identified directly and unambiguously. Fortunately, HSPs are demographically by343

far the most common when the birth gap used for comparing samples is short. When the birth gap344

approaches twice the age-of-first-birth, though, grandparent-grandchild pairs (GGPs) become more345

prevalent. To mitigate this issue, we restricted the range of birth gaps considered in the model to346

those where GGPs are rare (or indeed impossible in our simulated data; i.e., below twice the age of347

first birth plus two years).348

Self-recaptures (SPs) Our stage-structured model simplifies population dynamics, but we have349

to make an additional assumption about sampling selectivity to include IMR data. Here, we assume350
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selectivity varies only by stage (adult/juvenile), not by age within stage. We only consider female351

samples for self-recapture, since males are prone to permanent emigration (Beatty et al., 2022), so do352

not yield readily interpretable inferences.353

To compute stage-structured self-recapture probabilities in a manner analogous to kin capture354

probabilities, we retain only the first and last capture of each individual. This is a reasonable approx-355

imation for walruses because the self-recapture rate is relatively low. We condition on age of the first356

sample (a1) but not explicitly on age of the second sample; instead, we condition on the second sam-357

ple’s developmental stage at sampling (d2). This is necessary because our model is stage- rather than358

age-structured. If d (a) is a function that maps age to developmental stage, with d (a < 6) = "juvenile"359

and d (a ↫ 6) = "adult", then we restrict our comparisons to pairs of samples collected in years y1 and360

y2 where:361

d (a1 + (y2 ↑ y1)) = d2. (8)

If, based on age of the first sample (a1) and time elapsed between sampling events (y2 ↑ y1) the first362

sample would have reached the developmental stage of the second sample (d2; i.e., the two could be363

the same animal), then we assume it is equally likely to be any of the females in that developmental364

stage in that year. Therefore, the probability that the first sample is the same individual as the second365

sample is the reciprocal of the developmental stage abundance. Additionally, we account for survival366

over the intervening years. The self-recapture kinship probability between samples 1 and 2 (where367

y1 < y2) is:368

P [K12 = SP|a1, y1, d2, y2, L1 = 0,ω] =
I [d (a1 + (y2 ↑ y1)) = d2]” (y2 ↑ y1, a1)

Ny2,d2

. (9)

The survival term ”(y2↑y1, a1) represents the probability of survival for #t years as defined in section369

2.1.3. We also condition on the first sample being non-lethal (since the individual was subsequently370

recaptured). To obtain Ny2,d2 , we need either adult or juvenile abundance. Adult abundance is371

included in the population dynamics model, however, additional steps are required to deduce juvenile372

abundance. Assuming stable age composition, we show in Appendix S1: Section S3 that for walruses:373

Ny,J = Ny,A
ϱ↑ ωA

ϱ↑ ωJ

((
ϱ

ωJ

)5

↑ 1

)
, (10)

where ϱ = e
r is the relative annual population growth rate.374
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2.1.4 Pseudo-likelihood375

Given a real dataset, we would maximize the pseudo-log-likelihood that combines kinship probabilities376

and actual outcomes of all pairwise comparisons to estimate demographic parameters. To define the377

pseudo-log-likelihood, in brief, let wijk be “the data”, i.e. the kinship outcome, for samples i and j378

and target kinship k: wijk = 1 if the actual kinship Kij = k, or wijk = 0 if Kij ↔= k. As shown in379

Bravington et al. (2016), for “sparse sampling” CKMR where the population is large and the sampling380

fraction is correspondingly small, the comparisons are approximately statistically independent. Define381

pijk (ω) = P [Kij = k|zi, zj ,ω] to be the kinship probability for samples i and j, parameter values ω and382

covariates zi and zj (computed from, e.g., Eq. (5)). In each case, the probability that wijk = 1 is on383

the order of the reciprocal of adult abundance, which is very small, and therefore the pseudo-likelihood384

L is well approximated by a Poisson distribution with mean pijk (ω):385

wijk ⇐ Poisson(pijk(ω))

L(ω;w) = C

∏

i<j;k↓K
e
→pijk(ω)pijk (ω)

wijk
, (11)

where C is a constant and K are the kinship relationships being considered. Let w = {wijk; ⇒i, j, k},386

the possible combinations of samples and kin relationships; although in practice, some “impossible”387

comparisons are excluded (e.g., second-order kin born a long time apart). Then, the pseudo-log-388

likelihood is:389

loge L (ω;w) = $ (ω;w) = C +
∑

i<j;k↓K
{↑pijk (ω) + wijk loge pijk (ω)} . (12)

2.1.5 Design calculations390

For design purposes, we use an analytical method to predict precision of the estimates expected under391

di!erent sampling scenarios. The parameter uncertainty likely to result from proposed CKMR sam-392

pling designs can often be evaluated by calculation alone (Bravington et al., 2016, section 5). These393

calculations are adaptations of standard methods used to find the statistical information (i.e., deriva-394

tives) from the pseudo-log-likelihood, combined with enumerating the pairwise comparisons that would395

be available per covariate combination (which are limited here to: age or stage, sample year, and sex).396

The statistical basis is given in Bravington et al. (2016), section 4. Following standard statistical397

practice, we approximate the parameter variance using the inverse of the (pseudo) Fisher Information398
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H (ω0)=↑EW

[
d
2$ (ω0;W ) /dω2] (the negative expected Hessian over datasets evaluated at true pa-399

rameter values ω0, which are taken from the simulation). As $ (W ) is a sum of individual comparison400

terms, we can also write H (ω0) =
∑

i<j;k↓K hijk (ω0), where hijk (ω0) is the expected Fisher informa-401

tion matrix from a single comparison of type (i, j, k). Further, Appendix S1: Section S4 shows that402

for Poisson random variables such as wijk, we have403

hijk (ω0) = 4!ijk (ω0)!ijk (ω0)
↑ where !ijk (ω) =

d
√
pijk (ω)

dω
. (13)

The vector!ijk (ω) can therefore be obtained for all (i, j, k) by numerical di!erentiation of the proba-404

bilities calculated by the ICKMR model.405

We now group across pairs with identical covariate values. Let m(z) denote the number of samples406

with covariate combination z; the number of comparisons between two samples is m (z1)m (z2) (ig-407

noring double-counting for the moment). The grouped version of the pseudo-Fisher information can408

be written as409

H (mZ ;ω0) =
∑

z1,z2↓Z;k↓K

(
I (z1 < z2) +

1

2
I (z1 = z2)

)
m (z1)m (z2)hz1z2k (ω0) , (14)

where the parentheses containing indicators handle double counting in the m (z1)m (z2) product and410

hz1z2k (ω0) gives the Fisher information matrix for two samples with covariates z1 and z2 and kinship411

k. Z gives the collection of covariate combinations (analogous to K for the kinships) and mZ gives the412

sample sizes for those combinations (i.e., mZ is a vector as long as there are covariate combinations413

in Z and each element is the number of samples for that covariate combination).414

We then invert matrix H (mZ ;ω0) to approximate the expected variance V (mZ ; ϖ0) of a parameter415

estimate. Uncertainty from any function of the parameters, g (ω), can then be approximated by the416

delta method:417

V [g (ω) ;mZ ,ω0] ⇑
[
dg (ω)

dω

∣∣∣∣
ω0

]
V (mZ ,ω0)

[
dg (ω)

dω

∣∣∣∣
ω0

]↑

. (15)

ω0 values for annual sample sizes and number of years of sampling come directly from our designs;418

however, the age-sex composition of the samples comes from our simulations.419

The realized adult sample size (about 1,100 per year for 2013-2017 and 2023, or 6,600 total to420

date) is large enough relative to adult female abundance (~70,000; e!ectively more because of turnover421
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during the years modelled) that ~5–10% of samples are self/kin-recaptures. This means that a con-422

siderable proportion of pairwise comparisons have predictable outcomes based on the results of other423

comparisons, breaking independence. The “sparse sampling” assumption of Bravington et al. (2016)424

is therefore not strictly justified, so the variance might be slightly over- or under-estimated relative425

to our calculations. The direction is not entirely obvious, because finite population corrections will426

also a!ect the true variance, but we chose to eliminate redundant comparisons to err on the side of427

over-estimating true variance. Specifically:428

1. If an animal i was recaptured in multiple years, we only used i’s last recapture in MOP and429

XmHSP comparisons;430

2. If a sample j was identified as the o!spring in a MOP, we did not use it in XmHSP comparisons431

(because the outcome of an XmHSP comparison between j and any other sample k could be432

deduced from j and k’s MOP results; k and j are XmHSP if k was another o!spring of j’s433

mother).434

Eliminating these comparisons means that we must adjust the e!ective sample sizes mZ accordingly.435

We used simulation results on the frequency of self-recaptures and MOPs to determine how many436

samples would need to be eliminated and found that the e!ect is small for the scenarios we considered.437

2.2 Simulation for model checking and design scenarios438

2.2.1 Simulations439

To test our ICKMR model, we developed an individual-based simulation with walrus life history,440

modified from the R (R Core Team, 2025) package fishSim (Baylis, 2019). The simulation is stochastic441

and operates on an annual basis. Individuals are tracked using unique identifiers allowing identification442

of kinship pairs in simulated samples. We ran the simulation from 1950 to 2030, using an initial443

population of 250,000 animals. These individuals are considered “founders” and do not have mothers444

or fathers. The age and sex structure of the initial population is determined by survival and fecundity445

rates used in the simulation (Table 1), which were based on estimated 2015 rates (Taylor et al., 2018).446

Parameters in Table 1 were adjusted to maintain the desired population growth rate (er). Individuals447

of breeding age mate randomly and males can potentially father more than one calf per year. Female448

reproduction is as described in Section 2.1.2. Females that are in state 2 of the breeding cycle give449

birth to a single o!spring with 1:1 sex ratio (Fay, 1982). There is no systematic age e!ect on female450
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reproductive dynamics, except that they are guaranteed not pregnant at 4 years of age when they451

enter the breeding cycle (Section 2.1.2), which slightly lowers e!ective fecundity for the first few452

years of adulthood until the Markov chain reaches equilibrium. We did not include senescence in our453

ICKMR model, but we did include it in our simulations so we could investigate e!ects of violating the454

assumption of “no senescence” in the ICKMR model.455

In sampling years, captures are simulated according to either historical or planned future sample456

sizes (Table 2). Females are available to be sampled at any age 1+, while males are available for457

sampling from ages 1-5 only, because adult males do not tend to travel to the Chukchi Sea in the458

summer. After sampling, some individuals die (according to age and/or sex specific mortality rates,459

Table 1). If a female with a YOTY dies, her calf also dies. Individuals automatically die if they reach460

the maximum age. Living individuals then have their age incremented.461

The breeding probability/birth rate is confounded with the YOTY survival rate. Because only462

samples from age 1 onwards are considered, only the product (nominal breeding probability rate ↓463

nominal YOTY survival) a!ects the simulated samples, not the two constituent parameters. The464

simulation then proceeds to the following year.465

2.2.2 Model checking466

To evaluate agreement between the simulation and ICKMR model, we simulated 50 replicate datasets467

with demographic parameters under a null scenario (D0, Table 1), and we simulated historical and468

future sampling according to realized or target sample sizes by age class, with e!ort per year constant469

at the 2023 level (S0, Table 2). The population dynamics model in the simulations is close (but not470

identical) to the ICKMR model because the simulation includes a definite maximum age, whereas the471

ICKMR model does not. We checked each of the simulated datasets against the ICKMR model for:472

observed (i.e., simulated) and expected numbers of kin pairs in di!erent categories (MOPs, XmHSPs,473

and SPs); observed versus expected year gaps between half-sibling pairs, unbiasedness of the log-474

likelihood derivatives at the true parameter values, and parameter bias. These comparisons enabled475

us to evaluate whether the simulation and ICKMR models were consistent and whether simplifications476

made in the ICKMR model were acceptable. Refer to Appendix S1: Section S5 for details.477
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2.2.3 Scenarios478

We evaluated the performance of ICKMR under di!erent demographic and sampling scenarios. The479

demographic scenarios were a stationary population (D1), a slightly decreasing population (D2) and480

a slightly increasing population (D3) (Table 1). These values were chosen because they represent the481

credibility limits and point estimate for the 2015 walrus population growth rate based on an integrated482

population model (Taylor et al., 2018). We simulated historical sampling (2013-2017, when the first483

generation of research expeditions took place) according to realized sample sizes by age and sex (Beatty484

et al., 2022). We simulated possible reductions in future sampling e!ort, either by reducing the number485

of sampling years or by reducing the amount of sampling e!ort within years (S1-S8; Table 2). For486

simulated captures between 2023 and 2028, we estimated an expected overall sample size of 1600487

per year with 100% e!ort (i.e., a four-week research expedition). We estimated that 75% e!ort (a488

three-week research expedition) would result in an expected sample size of 1200. Planned sampling489

went ahead in 2023 but not in 2024, so we modified simulated sampling scenarios 1-8 to represent the490

“reality” of 100% survey e!ort in 2023 and 0% survey e!ort in 2024.491

The FWS Walrus Harvest Monitoring Program (WHMP) monitors the walrus harvest each year492

in two coastal communities in Alaska, which comprises 84% of total Alaska Native subsistence harvest493

(MacCracken et al., 2017). WHMP collects demographic data and biological samples from harvested494

animals. To assess the relative value of samples from harvested animals (versus biopsy samples from495

live individuals), we simulated each scenario without (L1) and with (L2) the substitution of 500 live496

biopsy samples with 500 lethal samples in sampling years 2023-2028.497

With three demographic scenarios, eight sampling scenarios, and two lethality scenarios, this re-498

sulted in a total of 48 simulated datasets from which to evaluate survey design. Given the relatively499

large population size and large number of samples, we did not expect key properties of simulated500

datasets to di!er substantially due to random variation. This was confirmed by model checking (refer501

to Appendix S1: Section Section S5). Therefore, we evaluated a single realization of each simulated502

scenario.503

Beatty et al. (2022) achieved a CV of 0.19 on adult female abundance in a five-year study. With504

this result in mind, we compared the estimated CVs for adult female abundance derived from IMR505

and ICKMR models to precision benchmarks of CV = 0.20, CV = 0.10 (representing a 50% reduction506

in CV), and CV = 0.05 (representing a 75% reduction in CV). Thus, we evaluated performance of our507

IMR and ICKMR models relative to performance of a multievent model with sampling e!ort over five508
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years (2013-2017).509

3 Results510

3.1 Adult female abundance511

Across all sampling scenarios, ICKMR gave substantially more precise abundance estimates than IMR512

alone (Fig. 2). This was also true across demographic scenarios (refer to Appendix S1: Figure S4 and513

Appendix S1: Table S4). The mean absolute decrease in CV on adult female abundance in paired514

scenarios with IMR and ICKMR was 7% for a stationary population, 4% for a decreasing population,515

and 8% for an increasing population. These represent relative decreases in CV of 47%, 45%, and 47%516

respectively. Refer to Appendix S1: Table S4 for expected CVs of adult female abundance across all517

demographic and sampling scenarios with and without the substitution of lethal samples and use of518

CKMR.519

The demographic scenarios (refer to Table 1) a!ected expected precision. With a declining popu-520

lation and smaller resulting population size during target inference years, there is less competition to521

be the kin of any given sample, therefore the number of kin pairs is higher, reducing the expected CV522

for a given sample size. The opposite happens with an increasing population.523

The simulated sampling scenarios resulted in between 1.75 and 5 years of total survey e!ort between524

2023 and 2028 (where total survey e!ort is a combination of years of e!ort and e!ort per year, which525

may be fractional, and where 5 years of total survey e!ort between 2023 and 2027 was the original526

plan for IMR; Fig. 3). In general, expected CVs on adult female abundance decreased with increasing527

number of total sampling years (Fig. 3). For a simulated stationary population and with a target528

CV of 0.2 (similar to CV = 0.19 from the IMR analysis in Beatty et al., 2022) on estimates of adult529

female abundance in 2025, su"cient precision was achieved in all sampling scenarios with ICKMR530

with or without the substitution of lethal samples (Fig. 2 and Fig. 3). For IMR with or without the531

substitution of lethal samples at least 3 years of total survey e!ort would be required to achieve a CV532

of 0.2. With a target CV of 0.1, ICKMR could achieve su"cient precision with 4 years of total survey533

e!ort, while IMR alone would not achieve this precision even with 5 years of total survey e!ort.534

The simulated substitution of 500 lethal samples per sampling year slightly changed expected535

precision in abundance estimates (the mean change in CV with versus without lethal samples was536

<1% across all demographic and sampling scenarios, with a maximum increase of 3%). For ICKMR,537
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expected CVs on adult female abundance were consistently higher when lethal samples were used, but538

the magnitude of the di!erence was small (mean increase of 0.14%). This suggests that lethal samples539

are almost equally valuable for walrus ICKMR, and the substitution of lethal samples for live biopsy540

samples could reduce required expedition length (500 samples = approx. 1/3 of samples expected541

during a 4-week expedition).542

3.2 Demographic parameters543

The simulated values of adult female survival and post-senescent adult female survival (Table 1)544

resulted in e!ective survival from age 6-37 of 0.96, 0.95, and 0.96 for stationary, decreasing, and545

increasing populations, respectively. Depending on demographic scenario, sampling scenario, and546

substitution of lethal samples, the expected SEs on adult female survival ranged from 0 to 0.03. When547

estimated with ICKMR, the expected SEs on adult female survival were always lower than when IMR548

alone was applied (mean decrease in SE = 0.01). The simulated values of juvenile female survival from549

age 1-5 were 0.9, 0.85, and 0.925 (Table 1). Across demographic scenarios, sampling scenarios, and550

the substitution of lethal samples, the expected SEs on juvenile female survival ranged from 0.02 to551

0.06. The mean expected decrease in SE on juvenile female survival with ICKMR was 0.01. Across552

all demographic and sampling scenarios, the simulated proportion of adult females in breeding state553

2 (calving) was 0.26. The mean expected SEs on the proportion of adult females in breeding state 2554

across demographic, sampling and lethality scenarios was 0.11 (range 0.01-0.31). The expected SEs555

on the proportion of adult females in breeding state 2 were notably lower when ICKMR was used556

compared with IMR (mean decrease in SE = 0.19). Refer to Appendix S1: Table S3 for expected557

SEs of life history parameters across all demographic and sampling scenarios with and without the558

substitution of lethal samples and use of ICKMR.559

4 Discussion560

We developed an ICKMR study design, with walrus as a case study, as an example for other researchers561

embarking on this evolving type of study. We investigated whether using ICKMR could increase562

expected precision in estimates of adult female walrus population size. To do this, we developed an563

ICKMR model with individual recaptures as a kin type (self pairs, SP) in addition to mother-o!spring564

and cross-cohort maternal half-sibling pairs (MOPs and XmHSPs). We made simplifying assumptions565
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for tractability. For example, we decided to exclude paternal kinships and not to model males at all566

because there would be minimal information in the data and extra complications in the modelling;567

we opted for a stage-structured (rather than age-structured) model, assuming unselective sampling by568

age within stage (which may not be particularly accurate for juveniles). In the future, a fully age-569

structured version of the model would simplify the kinship probabilities for the self-recapture data. We570

further assumed quasi-equilibrium population dynamics across the period 2000–2028, with a constant571

rate of population change and stable age composition. This is a simplification during at least part of572

the time frame (Taylor et al., 2018). Nevertheless, given that our general purpose was to investigate573

sample size requirements, we believe our simplifications were reasonable.574

The walrus project was initially planned as an IMR project with five years of total survey e!ort575

between 2013 and 2017 and another five years planned between 2023 and 2027. Because the 2023576

survey went ahead, we considered that year as fixed in our design scenarios. For all demographic577

scenarios, we found that expected relative CVs on adult female abundance were substantially (>30%)578

and consistently lower when using ICKMR than when using IMR. Our results indicated that by adding579

CKMR, a CV of 0.2 on estimates of adult female population size in 2025 could be achieved with 1.75580

years of survey e!ort between 2023 and 2028, whereas IMR alone would require at least 3 years of581

total survey e!ort within this period (with planned sample sizes per year of 1600; Fig. 3). Because582

this expected CV applies to adult females only, decision makers may wish to set a lower target CV; for583

example, with a target CV of 0.1, 4 years of total survey e!ort would be required with ICKMR but584

would not be achievable within 5 years with IMR alone. Estimates of adult female and juvenile female585

survival, and of the proportion of adult females in breeding state 2 (calving), were also improved with586

the addition of CKMR.587

Lethal samples can be incorporated into both IMR and CKMR analyses. In this study, we con-588

sidered lethal samples as a potential replacement for some live samples, and assumed that lethal and589

non-lethal samples were similar in terms of ERRO. Partial substitution of lethal samples for non-lethal590

(biopsy) samples resulted in similar precision on abundance estimates. In previous years, 50 samples591

per year were collected from harvested animals by the FWS WHMP. However, the total harvest in592

Alaska and Russia is estimated to number ~4,210 walruses per year (mean for 2016-2020; US Fish and593

Wildlife Service, 2023). Approximately 400 harvested samples would be needed to reduce each cruise594

by one week or 1600 samples would be needed to remove the need for an entire cruise. We did not595

investigate the impact of using exclusively harvested samples in place of one or more survey years, nor596
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did we investigate the potential consequences of hunter preferences (e.g., if hunters preferentially target597

large adult females, and those females tend to be more fecund, the ERRO of lethal and non-lethal598

samples may not be the same). In the longer term, using exclusively lethal samples could lead to lower599

precision in estimates of abundance, because lethal samples cannot go on to be self-recaptures or fu-600

ture parents. Using samples from harvested walruses in combination with non-lethal samples collected601

from wild animals during research cruises can increase cost e"ciency by reducing the need for extended602

at-sea operations, thereby lowering logistical expenses associated with vessel charters and personnel603

time. Additionally, partial reliance on harvested samples mitigates disturbance to live walruses by604

decreasing the need for direct interactions with animals in the wild. This approach also strengthens605

collaboration with Alaska Native hunters and co-management partners, fostering cooperative research606

e!orts that align with subsistence practices and local ecological knowledge. For example, further work607

could be done in collaboration with the WHMP to better understand hunter preferences and to in-608

corporate these into the CKMR model. Such partnerships are essential for long-term monitoring and609

e!ective management of the species. Furthermore, the ongoing contribution of the WHMP to walrus610

abundance estimation provides a strong justification for maintaining the program, ensuring that robust611

population assessments continue to inform conservation and management decisions.612

The results presented here all assume that age is accurately measured for each sample, using a613

DNA methylation-based “epigenetic clock”. Although epigenetic age has been shown to work fairly614

well in a variety of species, including walruses as in Robeck et al. (2023a), and further calibration615

studies are ongoing to improve cost and precision, epigenetic age is not perfectly precise. Failure to616

allow for any ageing error in CKMR will certainly lead to bias; for example, the birth-gap between617

XHSPs will be systematically overestimated, so that mortality rates will be underestimated. However,618

as long as the error variance of estimated age is known, it is possible to allow for ageing error within619

the CKMR probability formulas, using weighted sums over kinship probabilities at di!erent true ages.620

This should eliminate bias (Petersma et al., 2024), and Thomson et al. (2020) followed this approach621

for school shark (Galeorhinus galeus) using vertebral ages rather than epigenetic ages. In the case622

of ICKMR, the information from recaptured individuals will also be useful in resolving ages, because623

the interval between sampling will be known. Nevertheless, in severe cases, uncertainty about age624

can drastically limit the ability to gain information from CKMR, even when the number of kin-pairs625

found is high and the model is adjusted properly, as noted from practical experience by Trenkel et al.626

(2022). We expect to include ageing error in our ICKMR model when data are available and expect627
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that doing so will reduce precision compared to having hypothetical perfect age information. The loss628

of precision can be investigated through our design framework, but we opted not to include it in our629

design calculations (i.e., we assumed that there is no error), because we do not yet know how large630

the errors will be. Design calculations can be easily re-run when better estimates of ageing error are631

available. For that purpose, a fully-age-structured, rather than stage-structured model, would avoid632

the need to map uncertainty in age estimates to uncertain developmental stages.633

The basic assumptions of CKMR are that each animal had one mother and one father, and that634

the types of close-kin used in the model (generally first- and/or second-order) can be reliably identified635

genetically. While most vertebrates meet these requirements, the practical considerations of sampling636

mean that it would not be sensible to apply CKMR to some species and populations. Design exercises637

like the one presented here can help quantify cost and e!ort needed to achieve su"cient precision in638

quantities of interest using CKMR.639

Because CKMR is a flexible modeling framework, and because sampling can be done in so many640

di!erent ways, it is almost impossible to make absolute pronouncements about a species’ suitability641

for CKMR, except in relation to some particular sampling scheme. For example, lethal sampling of642

persistent family groups, as in wolves (Canidae) or killer whales (Orcinus orca), would be unlikely643

to yield useful results. CKMR tends to work best for relatively large, well-mixed populations, where644

sampling is sparse and approximate independence of comparisons is reasonable (refer to Bravington645

et al., 2016 for additional details). For any pairwise comparison used in the model, there should be646

no unmodeled correlation between sampling probability and reproduction, or between the event of647

an individual’s being sampled and its expected number of sampled close-kin. Sometimes this can be648

achieved by excluding certain pairwise comparisons from the model (e.g., between animals sampled649

close together in space and time, as for school shark in Thomson et al., 2020); sometimes by building650

a more elaborate model that conditions on covariates like place and time of sampling, thus avoiding651

the “unmodeled” issue. Here, for walruses, we assumed that if a mother is sampled, any accompanying652

o!spring are likely nearby and therefore have increased sampling probability, which would violate the653

condition above. Therefore, we did not compare possible o!spring and mothers sampled in the same654

year unless the potential o!spring was definitely not accompanying its mother; i.e., the o!spring was655

sampled as an adult. These examples underscore the need to work closely with biologists to incorporate656

accurate information about the life-history of the species of interest in CKMR model development.657

Results described in this paper fully leverage CKMR to further advance population ecology. We658

24



demonstrate how CKMR can be combined with IMR into a unified model and substantially increase659

precision in estimates of population size and demographic parameters compared to IMR alone. We660

provide an example of ICKMR study design, including model development, model checking, and design661

calculations, and show how simulated data can be used to evaluate di!erent proposed survey designs.662

While we used walrus as a motivating example, we expect that ICKMR can be used for estimating663

population parameters of interest across a range of taxa.664
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Table 1: Demographic parameters for simulation under four scenarios (D0, D1, D2, and D3). Scenario
D0 was used to check the model code, whereas the other scenarios included reproductive senescence
and were used to evaluate study design for a population that was either stationary (D1), decreasing
(D2), or increasing (D3).

Demographic Scenario
D0 D1 D2 D3

Parameter NULL Stationary Decreasing Increasing
Maximum age (AMAX) 37 37 37 37

Age at first birth for females (AFB) 6 6 6 6
Age of last birth for females (ALB) 37 29 29 29
Age of first fertility for males (AFF) 15 15 15 15

Young-of-the-year (Age 0 calf) survival 0.7 0.7 0.66 0.7
Juvenile survival (Ages 1 to 5) 0.9 0.9 0.85 0.925

Reproductive adult female survival (Ages 6 to ALR) 0.9622 0.99 0.985 0.99
Non-reproductive adult female survival (Ages ALR to AMAX) NA 0.55 0.5 0.55

Probability of breeding at 2-yr interval (!2) 0.1 0.1 0.1 0.1
Probability of breeding at 3-yr+ interval (!3) 0.5 0.5 0.5 0.5

Resulting rate of increase (r) 0 0 -0.02 +0.01
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Table 2: Details of sampling scenarios. For reference, scenarios are labelled S0-S8 with a description
of e!ort. E!ort per year is indicated as either 0, 0.75 (75%), or 1 (100%) e!ort as described in section
2.2. Each scenario was evaluated with and without the substitution of 500 lethal samples per year

E!ort per Year
Sampling Scenario Description 2023 2024 2025 2026 2027 2028

S0 NULL: 100% e!ort 2023-2027 1 1 1 1 1 0
S1 Reality + 100% e!ort 2025 1 0 1 0 0 0
S2 Reality + 100% e!ort 2025-2026 1 0 1 1 0 0
S3 Reality + 100% e!ort 2025-2027 1 0 1 1 1 0
S4 Reality + 100% e!ort 2025-2028 1 0 1 1 1 1
S5 Reality + 75% e!ort 2025 1 0 0.75 0 0 0
S6 Reality + 75% e!ort 2025-2026 1 0 0.75 0.75 0 0
S7 Reality + 75% e!ort through 2027 1 0 0.75 0.75 0.75 0
S8 Reality + 75% e!ort through 2028 1 0 0.75 0.75 0.75 0.75
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Figure Captions777

Figure 1: Directed cyclic graph showing the breeding cycle for walruses as represented in our Markov778

model. Nodes show the states (pregnant, with young-of-the-year (YOTY), or quiescent) and edges779

give transition probabilities between those states. On average, female walruses reach sexual maturity780

(age of first ovulation) at age 4, so females enter the graph at the quiescent node. On the right is781

the transition matrix, !, where cells indicate transition probabilities from row state to column state.782

Figure 2: Expected CV of adult female abundance (vertical axis) in di!erent years (horizontal axis)783

under di!erent sampling scenarios (panel columns) for a simulated stationary population. For clarity,784

points have been jittered horizontally. Triangular points represent expected CVs from IMR alone,785

while circular points show expected CVs with ICKMR. The inclusion of lethal samples is indicated by786

filled (lethal samples substituted) or open (no lethal samples) points. The grey horizontal dot-dashed,787

dashed, and dotted lines at CV = 0.2, 0.1, and 0.05 respectively represent decision-making thresholds.788

Figure 3: Total survey e!ort between 2023 and 2028 (in number of years, which may be a combination789

of calendar years of e!ort and fractional e!ort per year, horizontal axis) versus expected CV for adult790

female abundance in 2025 with IMR (triangular points) or with ICKMR (circular points) and with791

(filled) and without (open) the substitution of lethal samples for a simulated stationary population.792

The horizontal dot-dashed, dashed, and dotted lines at CV = 0.2, 0.1, and 0.05 respectively represent793

decision-making thresholds.794
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