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Abstract

Close-kin mark-recapture (CKMR) is a promising approach for assessing population size of
species which have been difficult to survey using more traditional methods. Here, we combine
individual and close-kin mark-recapture in a single modelling framework (ICKMR) and provide
an example of study design using this approach for Pacific walrus (Odobenus rosmarus divergens).
We develop the ICKMR model and test it using simulated datasets, then use properties of the
pseudo-likelihood to investigate the expected precision in estimates of abundance with different
proposed survey designs. Our motivating example, the Pacific walrus, is an ice-associated marine
mammal found in the Bering and Chukchi seas, where it is an important resource for Indigenous
peoples. Pacific walrus abundance declined in the late 20th century, and it is currently a species of
conservation concern due to potential impacts of climate change, particularly the loss of sea ice. To
reduce uncertainty in population size estimates, researchers undertook a genetic mark-recapture
sampling campaign from 2013-2017 and collected tissue samples from over 8,000 individuals. An-
other campaign of a similar scale is ongoing (2023-2028). While sample collection was designed
for individual mark-recapture, advances in CKMR methods and associated molecular techniques
mean that these samples could also be suitable for CKMR. The advantages of CKMR over mark-
recapture include an increased effective sample size (because each individual tags itself and its
parents, siblings, and offspring) and additional insights into demographic quantities of interest.
To make best use of genetic samples, we combine individual mark-recapture (IMR) with CKMR
(ICKMR) and investigate whether different sampling strategies can increase precision in estimates
of abundance. Our modeling approach includes special considerations for walrus life-history, in-
cluding a multi-year inter-birth interval. We found that expected CVs of the ICKMR estimates of
abundance, adult female survival, juvenile female survival, and proportion of breeding females are
lower than those expected from IMR alone, and with ICKMR, fewer years of future sampling can
be conducted to obtain sufficient precision in estimates of abundance. This work demonstrates the

utility of ICKMR and could be applicable across a variety of taxa.
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1 Introduction

Estimation of abundance and other demographic parameters such as survival are a key part of wildlife
management and conservation. Traditional mark-recapture analysis (Williams et al., 2002) can deliver
estimates with low bias and uncertainty, provided enough individual animals (i) are identifiable by
natural, artificial, or genetic “marks” and (i) can be recaptured over time. If genotypes are used
as marks, as in genetic individual mark-recapture (IMR; Palsbgll et al., 1997), then kinship patterns
amongst samples (e.g., parents, siblings) contain additional demographic information (Skaug, 2001).
Close-kin mark-recapture (CKMR; refer to Bravington et al., 2016) is a framework for using pairwise
kinships, as inferred from genotypes, to estimate abundance and demographic parameters. CKMR
provides additional flexibility compared to IMR, because it is not essential to recapture individuals, so
lethal (e.g., from sampling, harvest, or natural mortality) and/or non-lethal samples can be used. As
of 2025, most CKMR, projects have focused on commercial fish (e.g., Davies et al., 2020) or sharks
(e.g., Hillary et al., 2018), but a few have been conducted on mammals (e.g., Conn et al., 2020; Taras
et al., 2024; Lloyd-Jones et al., 2023).

The principle behind CKMR is that every individual has one mother and one father, so each
captured individual “tags” itself and its parents. For a given sample size, a large population is expected
to have fewer “recaptures” of closely related individuals compared to a small population. In practice,
CKMR data are derived from pairwise comparisons among samples while considering covariates such
as age, size, and sex. Each pair of samples is tested for a series of kinship relationships such as parent-
offspring, half-sibling, or self (the alternative being “unrelated”, i.e., none of the above). The CKMR
model has two components: (i) a population-dynamics model driven by the demographic parameters;
and (#) formulae for expected frequencies of different kinship types in pairwise comparisons that are
conditional on sample covariates and demographic parameters. By combining the kinship data with
the population dynamics model, parameters can be estimated using maximum likelihood or Bayesian
methods.

The success of CKMR depends on whether the data collected contain enough close-kin pairs to
yield acceptable precision in parameter estimates. The chance of success is greatly increased by a
study design exercise that evaluates the effects of sample age, size, and sex composition of sampled
animals, precision of covariate measurements, and study duration, while taking into account the species’
life history, ecology, and physiology (Sévéque et al., 2024; Petersma et al., 2024; Merriell et al., 2024;

Swenson et al., 2024; Waples and Feutry, 2022). The pairwise comparison framework leads to analytical
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results for the expected number of kin pairs and the parameter-estimation variance, given the number
of samples and associated covariates, so that simulation is not essential for study design. Nevertheless,
simulation can be used to check kinship probability formulae, robustness to model simplifications, and
design setup.

In this study, we perform and verify CKMR design calculations for the Pacific walrus (Odobenus
rosmarus divergens; hereafter, walrus), to demonstrate the design process and the utility of CKMR.
Our goal was to understand how different possible demographic scenarios and design choices would
impact precision of estimates of adult female abundance, adult female survival, and juvenile survival.
In addition, in most CKMR applications to date, self-recaptures were unlikely or impossible (e.g.,
when sampling is lethal). Lloyd-Jones et al. (2023) included IMR results in a CKMR, study but did
not integrate both datasets into a single model. Bravington et al. (2014) extended CKMR to include
IMR as an additional kinship type (ICKMR), whereby pairwise genetic comparisons can show that
two samples are from the same animal. They found that the expected CV in estimates of abundance
decreased from approximately 30% with IMR alone to approximately 20% with ICKMR. Here, we
explore design scenarios using IMR alone versus a combined ICKMR approach, and we find that the

latter can be used to reduce the amount of survey effort required for adequate monitoring.

1.1 Pacific walrus biology and background

The Pacific walrus is a gregarious, ice-associated pinniped inhabiting continental shelf waters of the
Bering and Chukchi seas. During winter (when sea ice forms south of the Bering Strait), almost all
walruses occupy the Bering Sea (Fay, 1982). In summer (when sea ice is absent from the Bering Sea)
almost all juvenile and adult female walruses, and some adult male walruses, migrate north to the
Chukchi Sea. When walruses rest offshore on sea-ice floes, their distribution is dynamic because it
generally follows the marginal ice zone, which is a moving, changing habitat which contains a mix
of ice floes and open water). Pacific walruses are considered a single, panmictic population (Beatty
et al., 2020) and are managed as a single stock (US Fish and Wildlife Service, 2023). Adult female
walruses move between US and Russian waters of the Chukchi Sea over the course of a single season
(Jay et al., 2012; Udevitz et al., 2017). Female walruses breed in winter and give birth to a single
calf approximately 14-15 months later (Fay, 1982; Robeck et al., 2022). Mothers and calves maintain
a close physical relationship for the first year, and weaning generally occurs between the first and

second year (Fay, 1982), though juveniles may travel with their mother until 3 years of age (Beatty
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et al., 2020). Female walruses may have their first calf at 6 years of age; male walruses do not reach
sexual maturity until 15 years of age (Fay, 1985). Maximum walrus lifespan is approximately 40 years
(Fay, 1982). Walruses can be aged from their teeth (Kryukova, 2014) and work is ongoing to develop
an epigenetic clock for walrus biopsy samples (i.e., estimated ages within 10% of true values; Robeck
et al., 2023a).

Abundance and demographic rate estimates are crucial for understanding population status and
trends, as well as for co-developing harvest management plans. Continued sea-ice loss and a con-
comitant increase in the intensity and expansion of industrial and shipping activities in Pacific Arctic
waters (Silber and Adams, 2019) are expected to drive a substantial population decline (US Fish and
Wildlife Service, 2011; MacCracken et al., 2017; Johnson et al., 2024a; Johnson et al., 2024b). Sub-
sistence walrus harvests in Alaska and Chukotka exceed 4,000 animals annually (US Fish and Wildlife
Service, 2023), and Indigenous peoples and co-management agencies need information on the status of
the walrus population to manage these harvests sustainably. Furthermore, in the United States, the
Marine Mammal Protection Act (MMPA; P.L. 92-522; 16 U.S.C. §§1361-1423h) requires a determina-
tion of potential biological removal for walruses, which, in turn, requires a precise abundance estimate
(Gilbert, 1999; Wade and DeMaster, 1999).

Scientists have attempted to ascertain walrus population size since at least 1880 (Fay et al., 1989),
and until very recently, the most concerted effort was the 1975-2006 range-wide aerial surveys conducted
collaboratively by the USA and the USSR and, later, the Russian Federation. However, abundance
estimates from these surveys were biased and imprecise. Aerial surveys were abandoned after the
2006 survey which yielded a 95% confidence interval (CI) of 55,000-507,000 animals and coefficient
of variation (CV) of 0.93 for the population abundance estimate of 129,000 despite a rigorous design,
innovative field methods, and sophisticated analyses. The imprecision in the estimate resulted from
the walrus population being widely dispersed with unpredictable local clumping (Speckman et al.,
2011; Jay et al., 2012). The first rigorous walrus survival rate estimates were obtained within the past
decade via Bayesian integrated population models (IPMs), which combined multiple data sources to
estimate demographic rates and population trends over multiple decades (Taylor and Udevitz, 2015;
Taylor et al., 2018). However, problems with the aerial survey data continued to preclude conclusions
about population abundance in the IPMs (Taylor and Udevitz, 2015).

In 2013, the US Fish and Wildlife Service (FWS) began a genetic IMR project to estimate walrus

abundance and demographic rates (Beatty et al., 2020; Beatty et al., 2022). Genetic “marking” via skin
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biopsy samples (Palsbgll et al., 1997) is preferable to traditional marking techniques because walruses
are extremely difficult to handle physically. In five summer research expeditions, biologists tried to
biopsy a representative sample of walruses. In 2013, 2014, and 2016, biopsy samples were collected in
US waters; in 2015 and 2017, biopsy samples were collected in both US and Russian waters (Beatty
et al., 2022). Sampling focused on groups of adult females and juveniles because these classes are the
demographically important population segments of this polygynous species (Fay, 1982; Beatty et al.,
2022). Further details are given in Beatty et al. (2020) and Beatty et al. (2022). Data analysis from the
2013-2017 expeditions used a Cormack-Jolly-Seber multievent model to estimate survival rates, and a
Horvitz-Thompson-like estimator to obtain population size. The total abundance estimate of 257,000
had a 95% credible interval (CrI) of 171,000-366,000 (CV=0.19; Beatty et al. 2022). Although this
was more precise than historical estimates from surveys (e.g., Speckman et al., 2011), the IMR study
required extensive investment of human and financial resources. Thus, FWS and the US Geological
Survey (USGS) initiated a second generation of expeditions in 2023 to estimate walrus abundance and
vital rates with CKMR. Initially, expeditions were planned to occur each June from 2023-2027. A
successful expedition to collect biopsy samples and other data was completed in 2023, but no samples
were collected in 2024. Here we explore ICKMR as a way to substantially increase the information

content of IMR without increasing sampling effort.

2 Methods

Our methods consist of two main components: (2.1) ICKMR model development and (2.2) simulation
for model checking and design scenarios. To develop the ICKMR model, we (2.1.1) selected the kinship
categories that should be common in the samples as well as informative about recent abundance,
(2.1.2) built a walrus-specific population dynamics model capable of handling those kinships, (2.1.3)
formulated pairwise kinship probabilities, (2.1.4) defined the pseudo-likelihood, and (2.1.5) performed
design calculations. We then (2.2.1) developed an individual-based simulation with walrus life history,
(2.2.2) used this simulation to check our ICKMR model, and (2.2.3) generated simulated datasets from
different demographic scenarios of interest with which we evaluated expected precision in parameter

estimates under different possible survey designs.
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2.1 ICKMR model development
2.1.1 Kinship Types

First, we considered which types of kinship may occur and are possible to detect in the population of
interest given our knowledge of life history, resolution of genetic methods, and survey design. CKMR
datasets often contain multiple genetically detectable kinships, all potentially providing some infor-
mation about population dynamics. Potential kinships fall into three basic categories (though refer
to Discussion): parent-offspring pairs (POPs); full-sibling pairs (FSPs); and second-order kin pairs
(2KPs, comprising half-sibling pairs (HSPs), grandparent-grandchild pairs (GGPs), and full-thiatic
pairs (FTPs), such as aunt-nephew). Not all those possible kinships would be informative about the
most important aspects of walrus dynamics: abundance, trend, and mortality.

We ignored paternal HSPs and father-offspring pairs (FOPs) and did not model male adults at
all because of irresolvable confounding between adult male abundance and persistent variability in
breeding success (which is likely given lek-based breeding; refer to Appendix S1: Section S1 for more
details). We did not include within-cohort HSPs or FSPs because walruses have a litter size of one and
female walruses are unlikely to repeatedly mate with the same male. Similarly, we did not consider
FTPs. GGPs are difficult to distinguish from HSPs, but we assume that they would be rare in our
survey sample and could be excluded (refer to Appendix S1: Section S2). We are thus left with three
kinships: mother-offspring pairs (MOPs), maternal half-sibling pairs (XmHSPs), and self-pairs (SPs)
where an individual is captured at least twice and in different years. Note that male juvenile samples,
which are common, are used as potential offspring or XmHSPs (i.e., they mark their mothers), but
not as potential SPs or fathers. For model development and design, we assume that all kinship types

are detected accurately.

2.1.2 Life history and population dynamics

Stage-structured quasi-equilibrium dynamics In order to formulate kinship probability equa-
tions, CKMR requires a population dynamics model. In this case, we only needed to model females. We
used a stage-structured (juvenile/adult), rather than fully-age-structured approach because (i) most
reproductive female adults are expected to have similar reproductive capacity and chance of survival
and (i) stage-structured models are simpler to implement for CKMR and require fewer parameters.
Given these factors, and the broad goal of estimating female adult abundance, a stage-structured

model should be adequate for design purposes. We also opted not to include calves in the model
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because early-life-history survival (before animals are easily sampled) would require extra parameters
that are difficult to estimate directly. In effect, calf survival and birth rate are combined into overall
rate-of-change in abundance, which becomes a single parameter to be estimated.

The parameters to be estimated were adult female and juvenile female survival rates (¢ and ¢j),
adult female abundance in some reference year (N, a), and population trend (r). We used two stages:
juveniles aged 1-5, and adults aged 6+ (the first age at which an accompanying calf is common). We
assumed constant survival within each stage (¢a and ¢;). Because weaning occurs between 1 and 2
years of age (Fay, 1982) and most adult female mortality occurs during the subsistence harvest in the
spring when 1-yr-old walruses are nearly 2, we assumed that offspring survival from age 1 onwards was
independent of its mother’s survival. This is consistent with Taylor et al. (2018). While we assume
that offspring survival is independent from age 1, we do not assume that sampling is independent until
age 6 (refer to Section 2.1.3). Our model assumed that adult female abundance increased or decreased
exponentially over the period covered by the population dynamics, which we set at 2000-2028. The
model needs to cover all birth dates of samples that are used as potential offspring, XmHSPs, or
SPs; choosing a lower limit of 2000 thus discards a few samples, but because there was more intense
harvesting prior to 2000 and large changes in abundance (Taylor and Udevitz, 2015; Taylor et al.,
2018) pre-2000 age composition is difficult to model.

Adult female abundance in year y (N, a) is described by
Nya = Ny a0 1)

where e” is the rate of population change and r = 0 corresponds to stasis.

To incorporate self-recaptures in the close-kin model, we must assume stable age composition
within stage. For that purpose, we assume that age composition over the modeled period is adequately
described by the stable-age or “quasi-equilibrium” distribution consistent with survival ¢5 and rate of

change €”. As shown in e.g., Keyfitz and Caswell (2005) Chapter 5, this is N, , oc Ny a¢%e "

The breeding cycle Female walruses, like many other animals, exhibit “skip-breeding”, taking gaps
of one or more years between births. This intermittent breeding can cause bias in parameter estimates
if not included in the CKMR model (Waples and Feutry, 2022; Swenson et al., 2024). Because XmHSPs
will be important for walruses, we decided to include a sub-model for skip-breeding with parameters

to be estimated from the CKMR data.
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Walruses have a litter size of one, and due to a 14-15 month gestation, they cannot give birth in
consecutive years (Fay, 1982; Katsumata et al., 2020; Robeck et al., 2022). They are also unlikely to
give birth every second year (Taylor and Udevitz, 2015; Fay et al., 1997; Taylor et al., 2018; Robeck
et al., 2023a). We used a first-order Markov model to describe the walrus breeding cycle (Fig. 1).
We assume three breeding states: (S1) pregnant; (S2) with young-of-the-year (YOTY) calf; or (S3)
mature and not in S1 or S2. From state S1 (pregnant), next year’s state must be S2 (with YOTY
calf). From state S2, a female may next year either return to state S1 (become pregnant again), with
probability 12, or move to state S3 (quiescent: neither pregnant nor with calf) with probability 1 — 5.
From state S3, she will either move to state S1 (become pregnant) with probability w3, or remain in
state S3 with probability 1 — 3.

Females enter the breeding cycle at state S3 (i.e., reach sexual maturity) at age 4, and therefore
sometimes become pregnant at age 5 and give birth at age 6 (Fay, 1982). Depending on the values of
b9 and 13, this leads to fluctuations in effective fecundity (i.e., probability of being in state S2) over the
first few years of adult life. Both 15 and 3 are estimated within the CKMR model, ultimately based on
the observed distribution of birth gaps between XmHSPs. We do not use any data on whether females
were with or without calf when sampled, and we cannot distinguish between fine-scale aspects of the
reproductive cycle, such as differences in fertilization /implantation rates versus pregnancy failures or
neonatal deaths. Thus, because the transition from S1 (pregnant) to S2 (with YOTY calf) is set to 1,
reproductive failures are subsumed by the fecundity rate.

We later use two quantities derived from the breeding cycle. First, we calculated the (average)
proportion of adult females in S2 (with YOTY), B2. Let ¥ be the (3x3) transition matrix implied by
the breeding cycle (Fig. 1). Taking the eigendecomposition of ¥, we extracted the second element of
the eigenvector with the largest eigenvalue to obtain (3, (Caswell, 2001). Second, we defined fecundity
as a function of age B(a), where the numerator in Eq. 2 gives the probability that any female of age
a is in state S2. Thus,

Fe Q=2

immature animals have fecundity 0, and an average adult has fecundity 1.
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2.1.3 Kinship probabilities

Having formulated our population dynamics model, we now quantify the probability of relatedness
between individuals. These probabilities will be used in the pairwise comparison terms summed in the
pseudo-log-likelihood. The kinship probabilities are linked to the population dynamics model by shared
parameters. For walruses, we considered three types of kinship: mother-offspring pair (MOP), cross-
cohort maternal half-sibling pair (XmHSP), and self-pair (SP), which represents individual recaptures
in different years.

To establish demographic kinship probabilities between two sampled individuals, we apply the
principle of expected relative reproductive output (ERRO; Bravington et al., 2016). For example, the
probability that a given adult female is the parent of an independently sampled offspring is the ratio
of that adult’s expected fecundity to the total fecundity of all parents at the time the offspring was
born. We denote the kinship for individuals 7 and j as Kj;, which in our case may be MOP, XmHSP,
SP, or unrelated pair (UP). Sampling was assumed to occur on an annual basis, i.e., a maximum of one
sample per individual per year would be used and any within-year individual recaptures discarded. In
the case of MOPs and XmHSPs, if recaptures exist in different years, we ensure that only one sample
(the last) from each individual is used (so “sample” and “individual” are interchangeable terms). We
can then be certain that the individual was alive until the time of the last sample, and so, conditional
on age, could have produced offspring at least up until that time. In addition, using only the last
sample improves precision in estimates of survival because the individual definitely survived to age
at last sample. For SPs, we consider the first and last sample from each individual (in which case,
“sample” and “individual” have different meanings) to maximize the interval over which we can be
certain that the individual was alive.

We use the following notation: individual 7, sampled at age a; in year y; with birth year b; £ y; —a;.
As noted above, we only estimate adult female abundance. However, we use notation that could be
adopted in models that estimate both juvenile and adult female abundance. In our notation, Ny a
refers to adult female abundance in year y. We include the A subscript for clarity throughout the
manuscript. In our derivation of juvenile female abundance (Appendix S1: Section S3), we simply
change the second subscript to J for juvenile, IV, ;. Thus, we generalize this notation to NNV, 4 where
y denotes year and d denotes developmental stage (A = adult or J = juvenile). We define the binary
variable L to indicate lethality of sampling (L; = 1 indicates lethal sampling for sample 7). We use 1()

as an indicator function, returning 1 when the condition inside the brackets is true, else 0. Kinship

10
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probabilities are functions of demographic parameters such as ¢paand Ny, o; we use € as shorthand for
this set of parameters, which become explicit in later iterations of the formulae.

We assumed that epigenetic age estimates will be available for all samples, based on an epigenetic
aging approach (Polanowski et al., 2014; Robeck et al., 2023b). Our model could be extended to
incorporate errors in estimated age (with standard deviation assumed known, i.e., after calibration of
epigenetic age to known-age samples), though the results here assume no errors; refer to the Discussion

section.

Mother-offspring pairs (MIOPs) Consider a comparison between a potential mother i, to a po-

tential offspring j. We restrict our analysis to comparisons that satisfy the following:

i is female (though j need not be);

e a; > 1 (no YOTY samples are used);

Yi # y; Va; > ap (do not compare potential offspring and mothers sampled in the same year

unless offspring age is at least the age of first birth, a;, = 6);

b; > 2000 (birth year of potential offspring must be greater than or equal to 2000, because

population dynamics starts at year 2000).

Walruses may accompany their mothers until age 3 (Beatty et al., 2020). To ensure independence, we
do not compare potential offspring that are juveniles (< 5 years old) to potential mothers sampled in
the same year. However, we do compare potential offspring that are adults (> 6 years old) to potential
mothers sampled in the same year. Furthermore, we compare all potential offspring to all potential
mothers sampled in different years, regardless of age, because we assume that the sampling events are
independent.

We can now distinguish two cases: y; < b; (potential mother sampled before potential offspring
birth) and y; > b; (potential mother sampled after potential offspring birth).

For y; < b;, individual i still has to survive one ore more years in order to be individual j’s mother
(note that ¢ may be immature when sampled, but mature by the time of j’s birth). In this case i’s
sampling must be non-lethal (L; = 0). The MOP probability is

Ri b; iy Qg
P[Kij = MOP|a;, i, bj, Li = 0,0] = E%ﬁégb))
j

11
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where R;(b;|y;,a;) is the expected reproductive output (ERO) of individual ¢ in year b; given ¢ is
age a; in year y;. For the denominator, R*(b;) is the total reproductive output (TRO) of the whole
population in year b;. ERO and TRO are in units of "number of calves" (males and females) here
(though generally their units are arbitrary but matching). TRO is the total number of adult females
in the population when j is born, N, A, multiplied by the proportion of females with calves (breeding
state S2), B2: RT(bj) = B2Ny, A-

For the numerator, i’s ERO has two components: first, she has to survive; second, she has to be

calving (breeding state 2) in b;:

R (bjlyi, ai) = @ (bj — yi,a:) P[B (a; + bj — yi) = 2], (4)

where ® (At, a) gives the probability of survival for At years, starting from age a (product of annual
juvenile and adult survival probabilities). B (a) is an individual’s breeding state at age a, which here
is individual 4’s age at b; (a; + b; — v;), assuming she survives.
Then, using our definition of fecundity at age, Eq. (2), we have
(b —ys,a;) Fa;+b; —y;
P[K;j; = MOP|aj, yi, bj, Li = 0,y; < b;,0] = by yi,azzzf (i +b; yl)~ (5)
bj,A

Vel

If 7 is sampled after the birth of j (b; < y;), then i was either alive at j’s birth or was not yet
born, eliminating the need to account for survival or lethality terms. However, ¢ may not have reached

reproductive maturity by b;. Letting F (a < 0) =0,

Flai — (yi — b;
B (K, = MOPla;, s, by. by < 5, 6] = -0 N:A i), ©)
KA

Maternal half-sibling pairs (XmHSPs) To find probabilities of cross-cohort maternal half-sibling
pairs (XmHSPs), we check whether individual k£ and individual ! have the same mother. We impose

the following criteria:
e b; > by (avoiding double-counting);
o by # by (because walruses give birth to a single offspring at a time);

e by > 2000 and b; > 2000 (birth years must be greater than or equal to 2000, because population

dynamics starts at 2000).
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If we call m the mother of k, what is the probability that I’s mother was m? We know that m was
alive, mature, and in breeding state S2 at k’s birth, and that m survived at least one more year after
k’s birth, otherwise k would not have survived (through its dependency on its mother) and would not

have been sampled. In order for m to also be I’s mother, three conditions must be met:
1. m survives until b; + 1, because we know [ survived to be sampled at 1+ years of age;
2. m is in breeding state S2 in b;;
3. amongst all the females that are alive and in breeding state S2 in year b;, m is the mother.

Let @ (At) be the adult probability of surviving another At years, and recall ¥ is the breeding cycle
transition matrix. The three-element probability vector of an animal being in each state (S1, S2, S3) at
time ¢ is pJ. Then plt+1l = Upl). Now define pl = (0,1,0) " which is the three-element probability
vector of m’s breeding state at k’s birth (certain state 2), let B,, (y) be m’s actual breeding state in

any year y, and recall 35 is the proportion of adult females in breeding state S2. Then

P [Kkl = XmHSPlbk, bl, 9]

= P[K},, = MOP|B,, (br) = S2,m alive at by + 1, b;, 0]
® (b — by,) [\I;bz—bkp[o]b
B Nbl,ABQ ’

(7)

where [\I/bl_b’“p[o]b is the second element of the vector, i.e., the probability that m (given she was
alive) was again in breeding state S2 at [’s birth.

HSPs are one of several “second-order” kin-pairs that are practically indistinguishable genetically
hence cannot be identified directly and unambiguously. Fortunately, HSPs are demographically by
far the most common when the birth gap used for comparing samples is short. When the birth gap
approaches twice the age-of-first-birth, though, grandparent-grandchild pairs (GGPs) become more
prevalent. To mitigate this issue, we restricted the range of birth gaps considered in the model to
those where GGPs are rare (or indeed impossible in our simulated data; i.e., below twice the age of

first birth plus two years).

Self-recaptures (SPs) Our stage-structured model simplifies population dynamics, but we have

to make an additional assumption about sampling selectivity to include IMR data. Here, we assume
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selectivity varies only by stage (adult/juvenile), not by age within stage. We only consider female
samples for self-recapture, since males are prone to permanent emigration (Beatty et al., 2022), so do
not yield readily interpretable inferences.

To compute stage-structured self-recapture probabilities in a manner analogous to kin capture
probabilities, we retain only the first and last capture of each individual. This is a reasonable approx-
imation for walruses because the self-recapture rate is relatively low. We condition on age of the first
sample (aq) but not explicitly on age of the second sample; instead, we condition on the second sam-
ple’s developmental stage at sampling (d2). This is necessary because our model is stage- rather than
age-structured. If d (a) is a function that maps age to developmental stage, with d (a < 6) = "juvenile"
and d (a > 6) = "adult", then we restrict our comparisons to pairs of samples collected in years y; and

yo where:

d(ar + (y2 —y1)) = do. (8)

If, based on age of the first sample (a1) and time elapsed between sampling events (yo — y1) the first
sample would have reached the developmental stage of the second sample (ds; i.e., the two could be
the same animal), then we assume it is equally likely to be any of the females in that developmental
stage in that year. Therefore, the probability that the first sample is the same individual as the second
sample is the reciprocal of the developmental stage abundance. Additionally, we account for survival

over the intervening years. The self-recapture kinship probability between samples 1 and 2 (where

Y1 < y2) is:

Id(ay + — =ds| P —Yy1,a
P[Ki2 = SP|a1,y1,d2,y2, L1 = 0,6] = ld e + (v yljz/.) . 2] ® (2 = 41 1)- 9)
Y2,a2

The survival term ®(y2 —y1, a1) represents the probability of survival for At years as defined in section
2.1.3. We also condition on the first sample being non-lethal (since the individual was subsequently
recaptured). To obtain N, 4,, we need either adult or juvenile abundance. Adult abundance is
included in the population dynamics model, however, additional steps are required to deduce juvenile

abundance. Assuming stable age composition, we show in Appendix S1: Section S3 that for walruses:

A— AN\
Ny = Ny,A)\_i(Z[; ((%) — 1) : (10)

where A = ¢€” is the relative annual population growth rate.
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2.1.4 Pseudo-likelihood

Given a real dataset, we would maximize the pseudo-log-likelihood that combines kinship probabilities
and actual outcomes of all pairwise comparisons to estimate demographic parameters. To define the
pseudo-log-likelihood, in brief, let w;j, be “the data”, i.e. the kinship outcome, for samples ¢ and j
and target kinship k: w;j, = 1 if the actual kinship K;; = k, or w;;, = 0 if K;; # k. As shown in
Bravington et al. (2016), for “sparse sampling” CKMR where the population is large and the sampling
fraction is correspondingly small, the comparisons are approximately statistically independent. Define
piji (0) =P [K;; = k|2, 2;, 0] to be the kinship probability for samples ¢ and j, parameter values 6 and
covariates z; and z; (computed from, e.g., Eq. (5)). In each case, the probability that w;j; = 1 is on
the order of the reciprocal of adult abundance, which is very small, and therefore the pseudo-likelihood

L is well approximated by a Poisson distribution with mean p;; (6):

Wy ~ Poisson(p;;(0))
LO;w)=C [[ e ™*@py.(0)", (11)
i<j;k€K
where C'is a constant and K are the kinship relationships being considered. Let w = {w;jx; Vi, j, k},
the possible combinations of samples and kin relationships; although in practice, some “impossible”
comparisons are excluded (e.g., second-order kin born a long time apart). Then, the pseudo-log-

likelihood is:

log, L (6;w) = A(B;w) =C+ Y {—piji (0) + wij log, piji (6)} - (12)
i<j;kex

2.1.5 Design calculations

For design purposes, we use an analytical method to predict precision of the estimates expected under
different sampling scenarios. The parameter uncertainty likely to result from proposed CKMR sam-
pling designs can often be evaluated by calculation alone (Bravington et al., 2016, section 5). These
calculations are adaptations of standard methods used to find the statistical information (i.e., deriva-
tives) from the pseudo-log-likelihood, combined with enumerating the pairwise comparisons that would
be available per covariate combination (which are limited here to: age or stage, sample year, and sex).

The statistical basis is given in Bravington et al. (2016), section 4. Following standard statistical

practice, we approximate the parameter variance using the inverse of the (pseudo) Fisher Information
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H (60)=—Ew [d*A (60; W) / d02} (the negative expected Hessian over datasets evaluated at true pa-
rameter values 8y, which are taken from the simulation). As A (W) is a sum of individual comparison

terms, we can also write H (6g) = > hiji (80), where h;ji, (69) is the expected Fisher informa-

i<j;keK
tion matriz from a single comparison of type (i, j, k). Further, Appendix S1: Section S4 shows that

for Poisson random variables such as w;;, we have

d/piji (6)

hijk (00) = 4Aijk (00) Aijk (Oo)T where Aijk (0) = d0

(13)

The vectorA;;i (@) can therefore be obtained for all (7, j, k) by numerical differentiation of the proba-
bilities calculated by the ICKMR model.

We now group across pairs with identical covariate values. Let m(z) denote the number of samples
with covariate combination z; the number of comparisons between two samples is m (z1) m (z2) (ig-
noring double-counting for the moment). The grouped version of the pseudo-Fisher information can

be written as

H(mz;0y) = Z (]I (z1 < z9) + %]I (z1 = ZQ)) m (z1) m (22) hayz.k (00) , (14)
271,22€ Z;kEK
where the parentheses containing indicators handle double counting in the m (z;) m (z2) product and
hayzok (00) gives the Fisher information matrix for two samples with covariates z; and z, and kinship
k. Z gives the collection of covariate combinations (analogous to K for the kinships) and mz gives the
sample sizes for those combinations (i.e., mz is a vector as long as there are covariate combinations
in Z and each element is the number of samples for that covariate combination).

We then invert matrix H (mz; 6g) to approximate the expected variance V (mz;60y) of a parameter
estimate. Uncertainty from any function of the parameters, g (6), can then be approximated by the
delta method:

dg (6)

Vig(0);mz,0q ~ [d@

V (mz,a(]) [CW

.
L 00] . (15)

6¢ values for annual sample sizes and number of years of sampling come directly from our designs;

6o
however, the age-sex composition of the samples comes from our simulations.

The realized adult sample size (about 1,100 per year for 2013-2017 and 2023, or 6,600 total to

date) is large enough relative to adult female abundance (~70,000; effectively more because of turnover
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during the years modelled) that “5-10% of samples are self/kin-recaptures. This means that a con-
siderable proportion of pairwise comparisons have predictable outcomes based on the results of other
comparisons, breaking independence. The “sparse sampling” assumption of Bravington et al. (2016)
is therefore not strictly justified, so the variance might be slightly over- or under-estimated relative
to our calculations. The direction is not entirely obvious, because finite population corrections will
also affect the true variance, but we chose to eliminate redundant comparisons to err on the side of

over-estimating true variance. Specifically:

1. If an animal ¢ was recaptured in multiple years, we only used ¢’s last recapture in MOP and

XmHSP comparisons;

2. If a sample j was identified as the offspring in a MOP, we did not use it in XmHSP comparisons
(because the outcome of an XmHSP comparison between j and any other sample k could be
deduced from j and k’s MOP results; k£ and j are XmHSP if k£ was another offspring of j’s

mother).

Eliminating these comparisons means that we must adjust the effective sample sizes mz accordingly.
We used simulation results on the frequency of self-recaptures and MOPs to determine how many

samples would need to be eliminated and found that the effect is small for the scenarios we considered.

2.2 Simulation for model checking and design scenarios
2.2.1 Simulations

To test our ICKMR model, we developed an individual-based simulation with walrus life history,
modified from the R (R Core Team, 2025) package fishSim (Baylis, 2019). The simulation is stochastic
and operates on an annual basis. Individuals are tracked using unique identifiers allowing identification
of kinship pairs in simulated samples. We ran the simulation from 1950 to 2030, using an initial
population of 250,000 animals. These individuals are considered “founders” and do not have mothers
or fathers. The age and sex structure of the initial population is determined by survival and fecundity
rates used in the simulation (Table 1), which were based on estimated 2015 rates (Taylor et al., 2018).
Parameters in Table 1 were adjusted to maintain the desired population growth rate (e”). Individuals
of breeding age mate randomly and males can potentially father more than one calf per year. Female
reproduction is as described in Section 2.1.2. Females that are in state 2 of the breeding cycle give

birth to a single offspring with 1:1 sex ratio (Fay, 1982). There is no systematic age effect on female
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reproductive dynamics, except that they are guaranteed not pregnant at 4 years of age when they
enter the breeding cycle (Section 2.1.2), which slightly lowers effective fecundity for the first few
years of adulthood until the Markov chain reaches equilibrium. We did not include senescence in our
ICKMR model, but we did include it in our simulations so we could investigate effects of violating the
assumption of “no senescence” in the ICKMR model.

In sampling years, captures are simulated according to either historical or planned future sample
sizes (Table 2). Females are available to be sampled at any age 14, while males are available for
sampling from ages 1-5 only, because adult males do not tend to travel to the Chukchi Sea in the
summer. After sampling, some individuals die (according to age and/or sex specific mortality rates,
Table 1). If a female with a YOTY dies, her calf also dies. Individuals automatically die if they reach
the maximum age. Living individuals then have their age incremented.

The breeding probability /birth rate is confounded with the YOTY survival rate. Because only
samples from age 1 onwards are considered, only the product (nominal breeding probability rate x
nominal YOTY survival) affects the simulated samples, not the two constituent parameters. The

simulation then proceeds to the following year.

2.2.2 Model checking

To evaluate agreement between the simulation and ICKMR model, we simulated 50 replicate datasets
with demographic parameters under a null scenario (D0, Table 1), and we simulated historical and
future sampling according to realized or target sample sizes by age class, with effort per year constant
at the 2023 level (SO, Table 2). The population dynamics model in the simulations is close (but not
identical) to the ICKMR, model because the simulation includes a definite maximum age, whereas the
ICKMR model does not. We checked each of the simulated datasets against the ICKMR model for:
observed (i.e., simulated) and expected numbers of kin pairs in different categories (MOPs, XmHSPs,
and SPs); observed versus expected year gaps between half-sibling pairs, unbiasedness of the log-
likelihood derivatives at the true parameter values, and parameter bias. These comparisons enabled
us to evaluate whether the simulation and ICKMR models were consistent and whether simplifications

made in the ICKMR model were acceptable. Refer to Appendix S1: Section S5 for details.

18



478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

502

503

504

505

506

507

508

2.2.3 Scenarios

We evaluated the performance of ICKMR under different demographic and sampling scenarios. The
demographic scenarios were a stationary population (D1), a slightly decreasing population (D2) and
a slightly increasing population (D3) (Table 1). These values were chosen because they represent the
credibility limits and point estimate for the 2015 walrus population growth rate based on an integrated
population model (Taylor et al., 2018). We simulated historical sampling (2013-2017, when the first
generation of research expeditions took place) according to realized sample sizes by age and sex (Beatty
et al., 2022). We simulated possible reductions in future sampling effort, either by reducing the number
of sampling years or by reducing the amount of sampling effort within years (S1-S8; Table 2). For
simulated captures between 2023 and 2028, we estimated an expected overall sample size of 1600
per year with 100% effort (i.e., a four-week research expedition). We estimated that 75% effort (a
three-week research expedition) would result in an expected sample size of 1200. Planned sampling
went ahead in 2023 but not in 2024, so we modified simulated sampling scenarios 1-8 to represent the
“reality” of 100% survey effort in 2023 and 0% survey effort in 2024.

The FWS Walrus Harvest Monitoring Program (WHMP) monitors the walrus harvest each year
in two coastal communities in Alaska, which comprises 84% of total Alaska Native subsistence harvest
(MacCracken et al., 2017). WHMP collects demographic data and biological samples from harvested
animals. To assess the relative value of samples from harvested animals (versus biopsy samples from
live individuals), we simulated each scenario without (L1) and with (L2) the substitution of 500 live
biopsy samples with 500 lethal samples in sampling years 2023-2028.

With three demographic scenarios, eight sampling scenarios, and two lethality scenarios, this re-
sulted in a total of 48 simulated datasets from which to evaluate survey design. Given the relatively
large population size and large number of samples, we did not expect key properties of simulated
datasets to differ substantially due to random variation. This was confirmed by model checking (refer
to Appendix S1: Section Section S5). Therefore, we evaluated a single realization of each simulated
scenario.

Beatty et al. (2022) achieved a CV of 0.19 on adult female abundance in a five-year study. With
this result in mind, we compared the estimated CVs for adult female abundance derived from IMR
and ICKMR models to precision benchmarks of CV = 0.20, CV = 0.10 (representing a 50% reduction
in CV), and CV = 0.05 (representing a 75% reduction in CV). Thus, we evaluated performance of our

IMR and ICKMR models relative to performance of a multievent model with sampling effort over five
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years (2013-2017).

3 Results

3.1 Adult female abundance

Across all sampling scenarios, ICKMR gave substantially more precise abundance estimates than IMR
alone (Fig. 2). This was also true across demographic scenarios (refer to Appendix S1: Figure S4 and
Appendix S1: Table S4). The mean absolute decrease in CV on adult female abundance in paired
scenarios with IMR and ICKMR was 7% for a stationary population, 4% for a decreasing population,
and 8% for an increasing population. These represent relative decreases in CV of 47%, 456%, and 47%
respectively. Refer to Appendix S1: Table S4 for expected CVs of adult female abundance across all
demographic and sampling scenarios with and without the substitution of lethal samples and use of
CKMR.

The demographic scenarios (refer to Table 1) affected expected precision. With a declining popu-
lation and smaller resulting population size during target inference years, there is less competition to
be the kin of any given sample, therefore the number of kin pairs is higher, reducing the expected CV
for a given sample size. The opposite happens with an increasing population.

The simulated sampling scenarios resulted in between 1.75 and 5 years of total survey effort between
2023 and 2028 (where total survey effort is a combination of years of effort and effort per year, which
may be fractional, and where 5 years of total survey effort between 2023 and 2027 was the original
plan for IMR; Fig. 3). In general, expected CVs on adult female abundance decreased with increasing
number of total sampling years (Fig. 3). For a simulated stationary population and with a target
CV of 0.2 (similar to CV = 0.19 from the IMR analysis in Beatty et al., 2022) on estimates of adult
female abundance in 2025, sufficient precision was achieved in all sampling scenarios with ICKMR
with or without the substitution of lethal samples (Fig. 2 and Fig. 3). For IMR with or without the
substitution of lethal samples at least 3 years of total survey effort would be required to achieve a CV
of 0.2. With a target CV of 0.1, ICKMR could achieve sufficient precision with 4 years of total survey
effort, while IMR alone would not achieve this precision even with 5 years of total survey effort.

The simulated substitution of 500 lethal samples per sampling year slightly changed expected
precision in abundance estimates (the mean change in CV with versus without lethal samples was

<1% across all demographic and sampling scenarios, with a maximum increase of 3%). For ICKMR,
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expected CVs on adult female abundance were consistently higher when lethal samples were used, but
the magnitude of the difference was small (mean increase of 0.14%). This suggests that lethal samples
are almost equally valuable for walrus ICKMR, and the substitution of lethal samples for live biopsy
samples could reduce required expedition length (500 samples = approx. 1/3 of samples expected

during a 4-week expedition).

3.2 Demographic parameters

The simulated values of adult female survival and post-senescent adult female survival (Table 1)
resulted in effective survival from age 6-37 of 0.96, 0.95, and 0.96 for stationary, decreasing, and
increasing populations, respectively. Depending on demographic scenario, sampling scenario, and
substitution of lethal samples, the expected SEs on adult female survival ranged from 0 to 0.03. When
estimated with ICKMR, the expected SEs on adult female survival were always lower than when IMR
alone was applied (mean decrease in SE = 0.01). The simulated values of juvenile female survival from
age 1-5 were 0.9, 0.85, and 0.925 (Table 1). Across demographic scenarios, sampling scenarios, and
the substitution of lethal samples, the expected SEs on juvenile female survival ranged from 0.02 to
0.06. The mean expected decrease in SE on juvenile female survival with ICKMR was 0.01. Across
all demographic and sampling scenarios, the simulated proportion of adult females in breeding state
2 (calving) was 0.26. The mean expected SEs on the proportion of adult females in breeding state 2
across demographic, sampling and lethality scenarios was 0.11 (range 0.01-0.31). The expected SEs
on the proportion of adult females in breeding state 2 were notably lower when ICKMR was used
compared with IMR (mean decrease in SE = 0.19). Refer to Appendix S1: Table S3 for expected
SEs of life history parameters across all demographic and sampling scenarios with and without the

substitution of lethal samples and use of ICKMR.

4 Discussion

We developed an ICKMR study design, with walrus as a case study, as an example for other researchers
embarking on this evolving type of study. We investigated whether using ICKMR could increase
expected precision in estimates of adult female walrus population size. To do this, we developed an
ICKMR model with individual recaptures as a kin type (self pairs, SP) in addition to mother-offspring

and cross-cohort maternal half-sibling pairs (MOPs and XmHSPs). We made simplifying assumptions
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for tractability. For example, we decided to exclude paternal kinships and not to model males at all
because there would be minimal information in the data and extra complications in the modelling;
we opted for a stage-structured (rather than age-structured) model, assuming unselective sampling by
age within stage (which may not be particularly accurate for juveniles). In the future, a fully age-
structured version of the model would simplify the kinship probabilities for the self-recapture data. We
further assumed quasi-equilibrium population dynamics across the period 2000-2028, with a constant
rate of population change and stable age composition. This is a simplification during at least part of
the time frame (Taylor et al., 2018). Nevertheless, given that our general purpose was to investigate
sample size requirements, we believe our simplifications were reasonable.

The walrus project was initially planned as an IMR project with five years of total survey effort
between 2013 and 2017 and another five years planned between 2023 and 2027. Because the 2023
survey went ahead, we considered that year as fixed in our design scenarios. For all demographic
scenarios, we found that expected relative CVs on adult female abundance were substantially (>30%)
and consistently lower when using ICKMR than when using IMR. Our results indicated that by adding
CKMR, a CV of 0.2 on estimates of adult female population size in 2025 could be achieved with 1.75
years of survey effort between 2023 and 2028, whereas IMR alone would require at least 3 years of
total survey effort within this period (with planned sample sizes per year of 1600; Fig. 3). Because
this expected CV applies to adult females only, decision makers may wish to set a lower target CV; for
example, with a target CV of 0.1, 4 years of total survey effort would be required with ICKMR but
would not be achievable within 5 years with IMR alone. Estimates of adult female and juvenile female
survival, and of the proportion of adult females in breeding state 2 (calving), were also improved with
the addition of CKMR.

Lethal samples can be incorporated into both IMR and CKMR analyses. In this study, we con-
sidered lethal samples as a potential replacement for some live samples, and assumed that lethal and
non-lethal samples were similar in terms of ERRO. Partial substitution of lethal samples for non-lethal
(biopsy) samples resulted in similar precision on abundance estimates. In previous years, 50 samples
per year were collected from harvested animals by the FWS WHMP. However, the total harvest in
Alaska and Russia is estimated to number 4,210 walruses per year (mean for 2016-2020; US Fish and
Wildlife Service, 2023). Approximately 400 harvested samples would be needed to reduce each cruise
by one week or 1600 samples would be needed to remove the need for an entire cruise. We did not

investigate the impact of using exclusively harvested samples in place of one or more survey years, nor
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did we investigate the potential consequences of hunter preferences (e.g., if hunters preferentially target
large adult females, and those females tend to be more fecund, the ERRO of lethal and non-lethal
samples may not be the same). In the longer term, using exclusively lethal samples could lead to lower
precision in estimates of abundance, because lethal samples cannot go on to be self-recaptures or fu-
ture parents. Using samples from harvested walruses in combination with non-lethal samples collected
from wild animals during research cruises can increase cost efficiency by reducing the need for extended
at-sea operations, thereby lowering logistical expenses associated with vessel charters and personnel
time. Additionally, partial reliance on harvested samples mitigates disturbance to live walruses by
decreasing the need for direct interactions with animals in the wild. This approach also strengthens
collaboration with Alaska Native hunters and co-management partners, fostering cooperative research
efforts that align with subsistence practices and local ecological knowledge. For example, further work
could be done in collaboration with the WHMP to better understand hunter preferences and to in-
corporate these into the CKMR model. Such partnerships are essential for long-term monitoring and
effective management of the species. Furthermore, the ongoing contribution of the WHMP to walrus
abundance estimation provides a strong justification for maintaining the program, ensuring that robust
population assessments continue to inform conservation and management decisions.

The results presented here all assume that age is accurately measured for each sample, using a
DNA methylation-based “epigenetic clock”. Although epigenetic age has been shown to work fairly
well in a variety of species, including walruses as in Robeck et al. (2023a), and further calibration
studies are ongoing to improve cost and precision, epigenetic age is not perfectly precise. Failure to
allow for any ageing error in CKMR will certainly lead to bias; for example, the birth-gap between
XHSPs will be systematically overestimated, so that mortality rates will be underestimated. However,
as long as the error variance of estimated age is known, it is possible to allow for ageing error within
the CKMR probability formulas, using weighted sums over kinship probabilities at different true ages.
This should eliminate bias (Petersma et al., 2024), and Thomson et al. (2020) followed this approach
for school shark (Galeorhinus galeus) using vertebral ages rather than epigenetic ages. In the case
of ICKMR, the information from recaptured individuals will also be useful in resolving ages, because
the interval between sampling will be known. Nevertheless, in severe cases, uncertainty about age
can drastically limit the ability to gain information from CKMR, even when the number of kin-pairs
found is high and the model is adjusted properly, as noted from practical experience by Trenkel et al.

(2022). We expect to include ageing error in our ICKMR model when data are available and expect
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that doing so will reduce precision compared to having hypothetical perfect age information. The loss
of precision can be investigated through our design framework, but we opted not to include it in our
design calculations (i.e., we assumed that there is no error), because we do not yet know how large
the errors will be. Design calculations can be easily re-run when better estimates of ageing error are
available. For that purpose, a fully-age-structured, rather than stage-structured model, would avoid
the need to map uncertainty in age estimates to uncertain developmental stages.

The basic assumptions of CKMR, are that each animal had one mother and one father, and that
the types of close-kin used in the model (generally first- and/or second-order) can be reliably identified
genetically. While most vertebrates meet these requirements, the practical considerations of sampling
mean that it would not be sensible to apply CKMR to some species and populations. Design exercises
like the one presented here can help quantify cost and effort needed to achieve sufficient precision in
quantities of interest using CKMR.

Because CKMR is a flexible modeling framework, and because sampling can be done in so many
different ways, it is almost impossible to make absolute pronouncements about a species’ suitability
for CKMR, except in relation to some particular sampling scheme. For example, lethal sampling of
persistent family groups, as in wolves (Canidae) or killer whales (Orcinus orca), would be unlikely
to yield useful results. CKMR tends to work best for relatively large, well-mixed populations, where
sampling is sparse and approximate independence of comparisons is reasonable (refer to Bravington
et al., 2016 for additional details). For any pairwise comparison used in the model, there should be
no unmodeled correlation between sampling probability and reproduction, or between the event of
an individual’s being sampled and its expected number of sampled close-kin. Sometimes this can be
achieved by excluding certain pairwise comparisons from the model (e.g., between animals sampled
close together in space and time, as for school shark in Thomson et al., 2020); sometimes by building
a more elaborate model that conditions on covariates like place and time of sampling, thus avoiding
the “unmodeled” issue. Here, for walruses, we assumed that if a mother is sampled, any accompanying
offspring are likely nearby and therefore have increased sampling probability, which would violate the
condition above. Therefore, we did not compare possible offspring and mothers sampled in the same
year unless the potential offspring was definitely not accompanying its mother; i.e., the offspring was
sampled as an adult. These examples underscore the need to work closely with biologists to incorporate
accurate information about the life-history of the species of interest in CKMR model development.

Results described in this paper fully leverage CKMR to further advance population ecology. We
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demonstrate how CKMR, can be combined with IMR into a unified model and substantially increase
precision in estimates of population size and demographic parameters compared to IMR alone. We
provide an example of ICKMR study design, including model development, model checking, and design
calculations, and show how simulated data can be used to evaluate different proposed survey designs.
While we used walrus as a motivating example, we expect that ICKMR can be used for estimating

population parameters of interest across a range of taxa.
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Table 1: Demographic parameters for simulation under four scenarios (D0, D1, D2, and D3). Scenario
DO was used to check the model code, whereas the other scenarios included reproductive senescence
and were used to evaluate study design for a population that was either stationary (D1), decreasing
(D2), or increasing (D3).

Demographic Scenario

DO D1 D2 D3
Parameter NULL Stationary Decreasing Increasing

Maximum age (AMAX) 37 37 37 37

Age at first birth for females (AFB) 6 6 6 6

Age of last birth for females (ALB) 37 29 29 29

Age of first fertility for males (AFF) 15 15 15 15
Young-of-the-year (Age 0 calf) survival 0.7 0.7 0.66 0.7
Juvenile survival (Ages 1 to 5) 0.9 0.9 0.85 0.925
Reproductive adult female survival (Ages 6 to ALR) 0.9622 0.99 0.985 0.99
Non-reproductive adult female survival (Ages ALR to AMAX) NA 0.55 0.5 0.55

Probability of breeding at 2-yr interval (i2) 0.1 0.1 0.1 0.1

Probability of breeding at 3-yr+ interval (i3) 0.5 0.5 0.5 0.5
Resulting rate of increase (r) 0 0 -0.02 +0.01
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Table 2: Details of sampling scenarios. For reference, scenarios are labelled S0-S8 with a description
of effort. Effort per year is indicated as either 0, 0.75 (75%), or 1 (100%) effort as described in section
2.2. Each scenario was evaluated with and without the substitution of 500 lethal samples per year

Effort per Year

Sampling Scenario Description 2023 2024 2025 2026 2027 2028
S0 NULL: 100% effort 2023-2027 1 1 1 1 1 0
S1 Reality + 100% effort 2025 1 0 1 0 0 0
52 Reality + 100% effort 2025-2026 1 0 1 1 0 0
S3 Reality + 100% effort 2025-2027 1 0 1 1 1 0
S4 Reality + 100% effort 2025-2028 1 0 1 1 1 1
S5 Reality + 756% effort 2025 1 0 0.75 0 0 0
S6 Reality + 75% effort 2025-2026 1 0 0.75 0.75 0 0
S7 Reality + 75% effort through 2027 1 0 0.75 0.75 0.7 0
S8 Reality + 75% effort through 2028 1 0 0.75 0.75 075 0.75
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Figure Captions

Figure 1: Directed cyclic graph showing the breeding cycle for walruses as represented in our Markov
model. Nodes show the states (pregnant, with young-of-the-year (YOTY), or quiescent) and edges
give transition probabilities between those states. On average, female walruses reach sexual maturity
(age of first ovulation) at age 4, so females enter the graph at the quiescent node. On the right is

the transition matrix, ¥, where cells indicate transition probabilities from row state to column state.

Figure 2: Expected CV of adult female abundance (vertical axis) in different years (horizontal axis)
under different sampling scenarios (panel columns) for a simulated stationary population. For clarity,
points have been jittered horizontally. Triangular points represent expected CVs from IMR alone,
while circular points show expected CVs with ICKMR. The inclusion of lethal samples is indicated by
filled (lethal samples substituted) or open (no lethal samples) points. The grey horizontal dot-dashed,

dashed, and dotted lines at CV = 0.2, 0.1, and 0.05 respectively represent decision-making thresholds.

Figure 3: Total survey effort between 2023 and 2028 (in number of years, which may be a combination
of calendar years of effort and fractional effort per year, horizontal axis) versus expected CV for adult
female abundance in 2025 with IMR (triangular points) or with ICKMR (circular points) and with
(filled) and without (open) the substitution of lethal samples for a simulated stationary population.
The horizontal dot-dashed, dashed, and dotted lines at CV = 0.2, 0.1, and 0.05 respectively represent

decision-making thresholds.
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